Skip to main content

Bioinformatics Tools for the Discovery of New Nonribosomal Peptides

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

This chapter helps in the use of bioinformatics tools relevant to the discovery of new nonribosomal peptides (NRPs) produced by microorganisms. The strategy described can be applied to draft or fully assembled genome sequences. It relies on the identification of the synthetase genes and the deciphering of the domain architecture of the nonribosomal peptide synthetases (NRPSs). In the next step, candidate peptides synthesized by these NRPSs are predicted in silico, considering the specificity of incorporated monomers together with their isomery. To assess their novelty, the two-dimensional structure of the peptides can be compared with the structural patterns of all known NRPs. The presented workflow leads to an efficient and rapid screening of genomic data generated by high throughput technologies. The exploration of such sequenced genomes may lead to the discovery of new drugs (i.e., antibiotics against multi-resistant pathogens or anti-tumors).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sieber SA, Marahiel MA (2003) Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol 185:7036–7043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Caboche S, Leclère V, Pupin M et al (2010) Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J Bacteriol 192:5143–5150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Caboche S, Pupin M, Leclère V et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Conti E, Stachelhaus T, Marahiel MA et al (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fedorova ND, Moktali V, Medema MH (2012) Bioinformatics approaches and software for detection of secondary metabolic gene clusters. Methods Mol Biol. 944:23–45

    Google Scholar 

  6. Weber T (2014) In silico tools for the analysis of antibiotic biosynthetic pathways. Int J Med Microbiol. 304:230–235

    Google Scholar 

  7. Boddy CN (2014) Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol. 41(2):443–50

    Google Scholar 

  8. Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505

    Article  CAS  PubMed  Google Scholar 

  9. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7: 211–224

    Article  CAS  PubMed  Google Scholar 

  10. Bachmann BO, Ravel J (2009) Chapter 8 Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. In: Hopwood DA (ed) Methods in enzymology. Academic, New York, pp 181–217

    Google Scholar 

  11. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  12. Minowa Y, Araki M, Kanehisa M (2007) Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J Mol Biol 368:1500–1517

    Article  CAS  PubMed  Google Scholar 

  13. Prieto C, García-Estrada C, Lorenzana D et al (2012) NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28: 426–427

    Article  CAS  PubMed  Google Scholar 

  14. Röttig M, Medema MH, Blin K et al (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367

    Article  PubMed Central  PubMed  Google Scholar 

  15. Rausch C, Weber T, Kohlbacher O et al (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Baranašić D, Zucko J, Diminic J et al (2014) Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J Ind Microbiol Biotechnol. 41:461–467

    Google Scholar 

  17. Rausch C, Hoof I, Weber T et al (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ziemert N, Podell S, Penn K et al (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7:e34064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Caradec T, Pupin M, Vanvlassenbroeck A et al (2014) Prediction of monomer isomery in Florine: a workflow dedicated to nonribosomal peptide discovery. PLoS One 9:e85667

    Article  PubMed Central  PubMed  Google Scholar 

  20. Pauwelyn E, Huang C-J, Ongena M et al (2013) New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol Plant Microbe Interact 26:585–598

    Article  CAS  PubMed  Google Scholar 

  21. Blin K, Medema MH, Kazempour D et al (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed Central  PubMed  Google Scholar 

  22. Medema MH, Blin K, Cimermancic P et al (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucl Acids Res 43:W237–W243. doi:10.1093/nar/gkv437

    Article  PubMed Central  PubMed  Google Scholar 

  24. Starcevic A, Zucko J, Simunkovic J et al (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucl Acids Res 36:6882–6892. doi:10.1093/nar/gkn685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Li MH, Ung PM, Zajkowski J et al (2009) Automated genome mining for natural products. BMC Bioinformatics 10:185. doi:10.1186/1471-2105-10-185

    Article  PubMed Central  PubMed  Google Scholar 

  26. Anand S, Prasad MVR, Yadav G et al (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucl Acids Res 38:W487–W496. doi:10.1093/nar/gkq340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucl Acids Res 32:W405–W413. doi:10.1093/nar/gkh359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Flissi A, Dufresne Y, Michalik J, et al (2016) Norine, the knowledgebase dedicated to nonribosomal peptides, is now open to crowdsourcing. Nucl Acids Res (in press)

    Google Scholar 

  29. Delcher AL, Harmon D, Kasif S et al (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879

    Article  CAS  PubMed  Google Scholar 

  31. Pruitt KD, Tatusova T, Brown GR et al (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Benson DA, Clark K, Karsch-Mizrachi I et al (2014) GenBank. Nucleic Acids Res 42: D32–D37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Schölkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  PubMed  Google Scholar 

  34. Caboche S, Pupin M, Leclère V et al (2009) Structural pattern matching of nonribosomal peptides. BMC Struct Biol 9:15

    Article  PubMed Central  PubMed  Google Scholar 

  35. Abdo A, Caboche S, Leclère V et al (2012) A new fingerprint to predict nonribosomal peptides activity. Journal of computer-aided molecular design 26:1187–1194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30:1218–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rutherford K, Parkhill J, Crook J et al (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944–945

    Article  CAS  PubMed  Google Scholar 

  38. Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: perl modules for the life sciences. Genome Res 12:1611–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Huson DH, Richter DC, Rausch C et al (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460. doi:10.1186/1471-2105-8-460

    Article  PubMed Central  PubMed  Google Scholar 

  41. The UniProt Consortium (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41: D43–D47

    Article  PubMed Central  Google Scholar 

  42. Berman HM, Kleywegt GJ, Nakamura H et al (2013) The future of the protein data bank. Biopolymers 99:218–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bolton EE, Wang Y, Thiessen PA et al (2008) PubChem: integrated platform of small molecules and biological activities. In: Wheeler RA, Spellmeyer DC (eds) Annual reports in computational chemistry. Elsevier, Amsterdam, pp 217–241

    Google Scholar 

  44. Berti AD, Greve NJ, Christensen QH et al (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Studholme DJ, Ibanez SG, MacLean D et al (2009) A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics 10:395

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

TW is supported by a grant of the Novo Nordisk Foundation. The work on Norine is supported by PPF Bioinformatique of Lille 1 University and Bilille.

We thank Hyun Uk Kim for testing the workflows and careful reading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maude Pupin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leclère, V., Weber, T., Jacques, P., Pupin, M. (2016). Bioinformatics Tools for the Discovery of New Nonribosomal Peptides. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics