Skip to main content

Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

Filamentous fungi are historically known as rich sources for production of biologically active natural products, so-called secondary metabolites. One particularly pharmaceutically relevant chemical group of secondary metabolites is the nonribosomal peptides synthesized by nonribosomal peptide synthetases (NRPSs). As most of the fungal NRPS gene clusters leading to production of the desired molecules are not expressed under laboratory conditions, efforts to overcome this impediment are crucial to unlock the full chemical potential of each fungal species. One way to activate these silent clusters is by overexpressing and deleting global regulators of secondary metabolism. The conserved fungal-specific regulator of secondary metabolism, LaeA, was shown to be a valuable target for sleuthing of novel gene clusters and metabolites. Additionally, modulation of chromatin structures by either chemical or genetic manipulation has been shown to activate cryptic metabolites. Furthermore, NRPS-derived molecules seem to be affected by cross talk between the specific gene clusters and some of these metabolites have a tissue- or developmental-specific regulation. This chapter summarizes how this knowledge of different tiers of regulation can be combined to increase production of NRPS-derived metabolites in fungal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  Google Scholar 

  2. Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Strauss J, Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 48:62–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 4:301–313

    Article  Google Scholar 

  6. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet Biol 48: 15–22

    Article  CAS  PubMed  Google Scholar 

  7. Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20(3):275–287

    Article  CAS  PubMed  Google Scholar 

  8. Schwarzer D, Marahiel MA (2001) Multimodular biocatalysts for natural product assembly. Naturwissenschaften 88:93–101

    Article  CAS  PubMed  Google Scholar 

  9. von Döhren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97:2675–2706

    Article  Google Scholar 

  10. Díez B, Gutiérrez S, Barredo JL, van Solingen P, van der Voort LH, Martín JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the alpha-aminoadipyl-cysteinyl-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358–16365

    PubMed  Google Scholar 

  11. MacCabe AP, Riach MB, Unkles SE et al (1990) The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 9(1):279–287

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Smith DJ, Burnham MK, Edwards J et al (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Biotechnology (N Y) 8:39–41

    Article  CAS  Google Scholar 

  13. Zocher R, Nihira T, Paul E et al (1986) Biosynthesis of cyclosporin A: partial purification and properties of a multifunctional enzyme from Tolypocladium inflatum. Biochemistry 25:550–553

    Article  CAS  PubMed  Google Scholar 

  14. Keating TA, Ehmann DE, Kohli RM et al (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. Chembiochem 2:99–107

    Article  CAS  PubMed  Google Scholar 

  15. Grünewald J, Marahiel MA (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70(1):121–146. doi:10.1128/MMBR.70.1.121-146.2006

    Article  PubMed Central  PubMed  Google Scholar 

  16. Boettger D, Bergmann H, Kuehn B et al (2012) Evolutionary imprint of catalytic domains in fungal PKS-NRPS hybrids. Chembiochem 13:2363–2373

    Article  CAS  PubMed  Google Scholar 

  17. Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through L-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592

    Article  CAS  PubMed  Google Scholar 

  18. Hoffmann K, Schneider-Scherzer E, Kleinkauf H et al (1994) Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J Biol Chem 269:12710–12714

    CAS  PubMed  Google Scholar 

  19. Niehaus EM, Kleigrewe K, Wiemann P et al (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20:1055–1066

    Article  CAS  PubMed  Google Scholar 

  20. Scharf DH, Heinekamp T, Remme N et al (2012) Biosynthesis and function of gliotoxin in Aspergillus fumigatus. Appl Microbiol Biotechnol 93:467–472

    Article  CAS  PubMed  Google Scholar 

  21. Ames BD, Walsh CT (2010) Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49: 3351–3365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  PubMed  Google Scholar 

  23. Pel HJ, de Winde JH, Archer DB et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  24. Cleveland TE, Yu J, Fedorova N et al (2009) Potential of Aspergillus flavus genomics for applications in biotechnology. Trends Biotechnol 27:151–157

    Article  CAS  PubMed  Google Scholar 

  25. von Döhren H (2009) A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet Biol 46(Suppl 1):45–52

    Article  Google Scholar 

  26. Wiemann P, Albermann S, Niehaus EM et al (2012) The Sfp-type 4′-phosphopantetheinyl transferase Ppt1 of Fusarium fujikuroi controls development, secondary metabolism and pathogenicity. PLoS One 7:37519

    Article  Google Scholar 

  27. Zocher R, Keller U, Kleinkauf H (1982) Enniatin synthetase, a novel type of multifunctional enzyme catalyzing depsipeptide synthesis in Fusarium oxysporum. Biochemistry 21: 43–48

    Article  CAS  PubMed  Google Scholar 

  28. Peeters H, Zocher R, Kleinkauf H (1988) Synthesis of beauvericin by a multifunctional enzyme. J Antibiot (Tokyo) 41:352–359

    Article  CAS  Google Scholar 

  29. Panaccione DG, Scott-Craig JS, Pocard JA et al (1992) A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum on maize. Proc Natl Acad Sci U S A 89:6590–6594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Johnson RD, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13:742–753

    Article  CAS  PubMed  Google Scholar 

  31. Wiest A, Grzegorski D, Xu BW et al (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  32. Correia T, Grammel N, Ortel I et al (2003) Molecular cloning and analysis of the ergopeptine assembly system in the ergot fungus Claviceps purpurea. Chem Biol 10:1281–1292

    Article  CAS  PubMed  Google Scholar 

  33. Song Z, Cox RJ, Lazarus CM et al (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196–1203

    Article  CAS  PubMed  Google Scholar 

  34. Sims JW, Fillmore JP, Warner DD et al (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun (Camb) 2:186–188

    Article  Google Scholar 

  35. Tanaka A, Tapper BA, Popay A et al (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  CAS  PubMed  Google Scholar 

  36. Gardiner DM, Cozijnsen AJ, Wilson LM et al (2004) The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol Microbiol 53:1307–1318

    Article  CAS  PubMed  Google Scholar 

  37. Cramer RA, Gamcsik MP, Brooking RM et al (2006) Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryot Cell 5:972–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Maiya S, Grundmann A, Li SM et al (2006) The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. Chembiochem 7:1062–1069

    Article  CAS  PubMed  Google Scholar 

  39. Eley KL, Halo LM, Song Z et al (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289–297

    Article  CAS  PubMed  Google Scholar 

  40. Maiya S, Grundmann A, Li X, Li SM, Turner G (2007) Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 8:1736–1743

    Article  CAS  PubMed  Google Scholar 

  41. Schümann J, Hertweck C (2007) Molecular basis of cytochalasin biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 129: 9564–9565

    Article  PubMed  Google Scholar 

  42. Tokuoka M, Seshime Y, Fujii I et al (2008) Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol 45:1608–1615

    Article  CAS  PubMed  Google Scholar 

  43. Slightom JL, Metzger BP, Luu HT et al (2009) Cloning and molecular characterization of the gene encoding the Aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938. Gene 431:67–79

    Article  CAS  PubMed  Google Scholar 

  44. Ames BD, Liu X, Walsh CT (2010) Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry 49:8564–8576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jin JM, Lee S, Lee J (2010) Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Mol Microbiol 76:456–466

    Article  CAS  PubMed  Google Scholar 

  46. Gao X, Chooi YH, Ames BD et al (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133:2729–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Gallo A, Bruno KS, Solfrizzo M et al (2012) New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl Environ Microbiol 78:8208–8218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. O'Hanlon KA, Gallagher L, Schrettl M (2012) Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus. Appl Environ Microbiol 78:3166–3176

    Article  PubMed Central  PubMed  Google Scholar 

  49. Haynes SW, Gao X, Tang Y et al (2013) Complexity generation in fungal peptidyl alkaloid biosynthesis: a two-enzyme pathway to the hexacyclic MDR export pump inhibitor ardeemin. ACS Chem Biol 8:741–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Andersen MR, Nielsen JB, Klitgaard A et al (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110:E99–E107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chen L, Yue Q, Zhang X et al (2013) Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis. BMC Genomics 14:339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. WHO (2014) Antimicrobial resistance: global report on surveillance 2014

    Google Scholar 

  53. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Jain S, Keller N (2013) Insights to fungal biology through LaeA sleuthing. Fungal Biol Rev 27:51–59

    Article  Google Scholar 

  55. Kosalkova K, Garcia-Estrada C, Ullan RV et al (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214–225

    Article  CAS  PubMed  Google Scholar 

  56. Kawauchi M, Nishiura M, Iwashita K (2013) Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell 12:1087–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bouhired S, Weber M, Kempf-Sontag A et al (2007) Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet Biol 44:1134–1145

    Article  CAS  PubMed  Google Scholar 

  58. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    Article  CAS  PubMed  Google Scholar 

  59. Lee I, Oh JH, Shwab EK et al (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Wiemann P, Brown DW, Kleigrewe K et al (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 9:1236–1250

    Google Scholar 

  61. Butchko RA, Brown DW, Busman M et al (2012) Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol 49:602–612

    Article  CAS  PubMed  Google Scholar 

  62. Wiemann P, Guo CJ, Palmer JM et al (2013) Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci U S A 110:17065–17070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Crespo-Sempere A, Marín S, Sanchis V, Ramos AJ (2013) VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int J Food Microbiol 166:479–486

    Article  CAS  PubMed  Google Scholar 

  64. Forseth RR, Amaike S, Schwenk D et al (2013) Homologous NRPS-like gene clusters mediate redundant small-molecule biosynthesis in Aspergillus flavus. Angew Chem Int Ed Engl 52:1590–1594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. López-Berges MS, Schäfer K, Hera C et al (2014) Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism. Fungal Genet Biol 62:78–84

    Article  PubMed  Google Scholar 

  66. Chujo T, Scott B (2014) Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol Microbiol 92:413–434

    Article  CAS  PubMed  Google Scholar 

  67. Bergmann S, Schümann J, Scherlach K et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  PubMed  Google Scholar 

  68. Wiemann P, Sieber CM, von Bargen KW et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9, e1003475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Yeh HH, Chiang YM, Entwistle R et al (2012) Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis. Appl Microbiol Biotechnol 96:739–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Awakawa T, Yang XL, Wakimoto T et al (2013) Pyranonigrin E: a PKS-NRPS hybrid metabolite from Aspergillus niger identified by genome mining. Chembiochem 14:2095–2099

    Article  CAS  PubMed  Google Scholar 

  71. Yin WB, Baccile JA, Bok JW et al (2013) A nonribosomal peptide synthetase-derived iron(iii) complex from the pathogenic fungus Aspergillus fumigatus. J Am Chem Soc 135(6):2064–2067. doi:10.1021/ja311145n

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Qiao K, Chooi YH, Tang Y (2011) Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng 13:723–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Zhang D, Ge H, Xie D et al (2013) Periconiasins A-C, new cytotoxic cytochalasins with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus Periconia sp. Org Lett 15:1674–1677

    Article  CAS  PubMed  Google Scholar 

  74. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  75. Szewczyk E, Nayak T, Oakley CE et al (2006) Fusion PCR and gene targeting in Aspergillus nidulans. Nat Protoc 1:3111–3120

    Google Scholar 

  76. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–352

    Google Scholar 

  77. UniProt Consortium U (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40(Database issue):D71–75

    Google Scholar 

  78. Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306–312

    Google Scholar 

  79. Bachmann BO, Ravel J (2009) Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217

    Google Scholar 

  80. Rausch C, Weber T, Kohlbacher O et al (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808

    Google Scholar 

  81. Röttig M, Medema MH, Blin K et al (2011) NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39(Web Server issue):W362–367

    Google Scholar 

  82. Caboche S, Pupin M, Leclère V et al (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36(Database issue):D326–331

    Google Scholar 

  83. Prieto C, García-Estrada C, Lorenzana D et al (2012) NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28:426–427

    Google Scholar 

  84. Blin K, Medema MH, Kazempour D et al (2013) antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–212

    Google Scholar 

  85. Khaldi N, Seifuddin FT, Turner G (2010) SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Google Scholar 

  86. Ziemert N, Podell S, Penn K et al (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7:e34064

    Google Scholar 

Download references

Acknowledgments

This research was funded by NIH PO1 GM084077 to NPK, by R01 Al065728-01 to NPK, and by NIH NRSA AI55397 to AAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy P. Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Soukup, A.A., Keller, N.P., Wiemann, P. (2016). Enhancing Nonribosomal Peptide Biosynthesis in Filamentous Fungi. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics