Skip to main content

Liquid-Liquid Phase Separation of Oil Bodies from Seeds

  • Protocol
Recombinant Proteins from Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1385))

Abstract

Fundamentally, oil bodies are discrete storage organelles found in oilseeds, comprising a hydrophobic triacylglycerol core surrounded by a half-unit phospholipid membrane and an outer shell of specialized proteins known as oleosins. Oil bodies possess a number of attributes that were exploited by SemBioSys Genetics to isolate highly enriched fractions of oil bodies through liquid-liquid phase separation for a number of commercial applications. The current chapter provides a general guide for the isolation of oil bodies from Arabidopsis and/or safflower seed, from which protocols can be refined for different oilseed sources. For SemBioSys Genetic’s recombinant technology, therapeutic proteins were covalently attached to oleosins or fused in-frame with ligands which bound oil bodies, facilitating their recovery to high levels of purity during “upstream processing” of transformed seed. Core to this technology was oil body isolation consisting of simple manipulation including homogenization of seeds to free the oil bodies, followed by the removal of insoluble fractions, and phase separation to recover the oil bodies. During oil body enrichment (an increase in oil body content concomitant with removal of impurities), a number of options and tips are provided to aid researchers in the manipulation and monitoring of these robust organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from Yeast to Man. J Lipid Res 53(2):215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Article  CAS  Google Scholar 

  3. Tzen JTC (2012) Integral proteins in plant oil bodies. ISRN Botany. doi:10.5402/2012/173954

    Google Scholar 

  4. Vindigni J-D, Wien F, Giuliani A et al (2013) Fold of an oleosin targeted to cellular oil bodies. Biochim Biophys Acta 1828:1881–1888

    Article  CAS  PubMed  Google Scholar 

  5. Hsieh K, Huang AH (2004) Endoplasmic reticulum, oleosins, and oils in seeds and tapetum cells. Plant Physiol 136:3427–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarmiento C, Ross JH, Herman E et al (1997) Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J 11:783–796

    Article  CAS  PubMed  Google Scholar 

  7. Tzen JTC, Huang AHC (1992) Characterization of the charged components and their topology on the surface of plant seed oil bodies. J Biol Chem 267(22):15626–15634

    CAS  PubMed  Google Scholar 

  8. Wu YY, Chou YR, Wang CS et al (2010) Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms. Plant Physiol Biochem 48:81–89

    Article  CAS  PubMed  Google Scholar 

  9. Siloto RMP, Findlay K, Lopez-Villalobos A et al (2006) The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell 18:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimada TL, Chimada T, Takahashi H et al (2008) A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J 55:798–809

    Article  CAS  PubMed  Google Scholar 

  11. Yurchenko OP, Field CJ, Nykiforuk CL et al (2007) Genetic modification of oilseeds to produce bioactive lipids. In: Acharya SN, Thomas JE (eds) Advances in medicinal plant research. Research Signpost, Trivandrum, pp 357–399

    Google Scholar 

  12. Carlsson AS, Zhu L-H, Andersson M et al (2014) Platform crops amenable to genetic engineering—a requirement for successful production of bio-industrial oils through genetic engineering. Biocatal Agric Biotechnol 3(1):58. doi:10.1016/j.bcab.2013.007

    Google Scholar 

  13. Damude HG, Kinney AJ (2008) Engineering oilseeds to produce nutritional fatty acids. Physiol Plant 132:1–10

    CAS  PubMed  Google Scholar 

  14. Dyer JM, Mullen RT (2008) Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol Plant 132:11–22

    CAS  PubMed  Google Scholar 

  15. Haslam RP, Ruiz-Lopez N, Eastmond P et al (2012) The modification of plant oil composition via metabolic engineering—better nutrition by design. Plant Biotechnol J. doi:10.1111/pbi.12012

    Google Scholar 

  16. Lopez NR, Haslam RP, Usher SL et al (2013) Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng 17:30–41. doi:10.1016/j.ymben.2013.03.001

    Article  Google Scholar 

  17. Maheshwari P, Kovalchuk I (2014) Genetic engineering of oilseed crops. Biocatal Agric Biotechnol 3:31–37. doi:10.1016/j.bcab.2013.11.001

    Google Scholar 

  18. Nykiforuk CL, Shewmaker C, Harry I et al (2012) High level accumulation of gamma linolenic acid (C13:3Δ6,9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res 21:367–381

    Article  CAS  PubMed  Google Scholar 

  19. Nykiforuk CL, Furukawa-Stoffer TL, Huff PW et al (2002) Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. Biochim Biophys Acta 1580(2-3):95–109

    Article  CAS  PubMed  Google Scholar 

  20. Fisk ID, White DA, Lad M et al (2008) Oxidative stability of sunflower oil bodies. Eur J Lipid Sci Technol 110:962–968

    Article  CAS  Google Scholar 

  21. Fischer JJ, Nykiforuk CL, Chen X et al (2014) Delayed oxidation of polyunsaturated fatty acids encapsulated in safflower (Carthamus tinctorius) oil bodies. IJESIT 3(3):512–522

    Google Scholar 

  22. Markley N, Nykiforuk C, Boothe J et al (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19(6):34–47

    CAS  Google Scholar 

  23. Nykiforuk CL, Boothe JG (2012) Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed. In: Voynov V, Caravella JA (eds) Therapeutic proteins: methods and protocols. Methods in molecular biology, vol 899. Springer. New York doi: 10.1007/978-1-61779-921-1_16

    Google Scholar 

  24. Boothe J, Nykiforuk C, Shen Y et al (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  CAS  PubMed  Google Scholar 

  25. Nykiforuk CL, Boothe JG, Murray EW et al (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Article  CAS  PubMed  Google Scholar 

  26. Nykiforuk CL, Shen Y, Murray EW et al (2011) Expression and recovery of biologically active recombinant Apolipoprotein AIMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol J 9:250–263

    Article  CAS  PubMed  Google Scholar 

  27. Nykiforuk CL, Shen Y, Murray E et al (2012) Plant-derived manufacturing of Apolipoprotein AI Milano: purification and functional characterization. In: Bertolini J, Goss N, Curling J (eds) Production of plasma proteins for therapeutic use. pp 283–300

    Google Scholar 

  28. Austin JR, Frost E, Vidi P-A et al (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shanmugabalaji V, Besagni C, Piller LE et al (2013) Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Mol Biol 81(1-2):13–25

    Article  CAS  PubMed  Google Scholar 

  30. Vidi P-A, Kessler F, Bréhélin C (2007) Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol. doi:10.1186/1472-6750-7-4

    PubMed  PubMed Central  Google Scholar 

  31. Han Z, Madzak C, Su WW (2012) Tunable Nano-oleosomes derived from engineered Yarrowia lipolytica. Biotechnol Bioeng 110:702–710

    Article  PubMed  Google Scholar 

  32. Deckers HM, van Rooijen F, Boothe J et al (2000) Uses of oil bodies. US patent 6,146,645

    Google Scholar 

  33. Huang AH (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol 110:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zienkiewicz K, Castro AJ, Alche JD et al (2010) Identification and localization of a caleosin in olive (olea europaea L.) pollen during in vitro germination. J Exp Bot 61:1537–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu WX, Liu HL, Qu LQ (2013) Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet 126:2289–2297

    Article  CAS  PubMed  Google Scholar 

  36. Nykiforuk CL, Johnson-Flanagan AM (1999) Storage reserve mobilization during low temperature germination and early seedling growth in Brassica napus. Plant Physiol Biochem 37(12):939–947

    Article  CAS  Google Scholar 

  37. Tzen JTC, Peng CC, Cheng DJ et al (1997) A new method for seed oil body purification and examination of oil body integrity following germination. J Biochem 121(4):762–768

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory L. Nykiforuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nykiforuk, C.L. (2016). Liquid-Liquid Phase Separation of Oil Bodies from Seeds. In: MacDonald, J., Kolotilin, I., Menassa, R. (eds) Recombinant Proteins from Plants. Methods in Molecular Biology, vol 1385. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3289-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3289-4_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3288-7

  • Online ISBN: 978-1-4939-3289-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics