The Use of Legendre and Zernike Moment Functions for the Comparison of 2-D PAGE Maps

  • Emilio MarengoEmail author
  • Elisa Robotti
  • Marco Demartini
Part of the Methods in Molecular Biology book series (MIMB, volume 1384)


The comparison of 2-D maps is not trivial, the main difficulties being the high complexity of the sample and the large experimental variability characterizing 2-D gel electrophoresis. The comparison of maps from control and treated samples is usually performed by specific software, providing the so-called spot volume dataset where each spot of a specific map is matched to its analogous in other maps, and they are described by their optical density, which is supposed to be related to the underlying protein amount. Here, a different approach is presented, based on the direct comparison of 2-D map images: each map is decomposed in terms of moment functions, successively applying the multivariate tools usually adopted in image analysis problems. The moments calculated are then treated with multivariate classification techniques. Here, two types of moment functions are presented (Legendre and Zernike moments), while linear discriminant analysis and partial least squares discriminant analysis are exploited as classification tools to provide the classification of the samples. The procedure is applied to a sample dataset to prove its effectiveness.

Key words

Moment functions Legendre moments Zernike moments Classification LDA PLS-DA Image analysis 


  1. 1.
    Kossowska B, Dudka I, Bugla-Ploskonska G, Szymanska-Chabowska A, Doroszkiewicz W, Gancarz R, Andrzejak R, Antonowicz-Juchniewicz J (2010) Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: a preliminary study. Sci Total Environ 408(22):5317–5324CrossRefPubMedGoogle Scholar
  2. 2.
    Rodriguez-Pineiro AM, Blanco-Prieto S, Sanchez-Otero N, Rodriguez-Berrocal FJ, Paez de la Cadena M (2010) On the identification of biomarkers for non-small cell lung cancer in serum and pleural effusion. J Proteomics 73(8):1511–1522CrossRefPubMedGoogle Scholar
  3. 3.
    Poulsen NA, Andersen V, Moller JC, Moller HS, Jessen F, Purup S, Larsen LB (2012) Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol 12:N76CrossRefGoogle Scholar
  4. 4.
    Bouwman FG, de Roos B, Rubio-Aliaga I, Crosley LK, Duthie SJ, Mayer C, Horgan G, Polley AC, Heim C, Coort SLM, Evelo CT, Mulholland F, Johnson IT, Elliott RM, Daniel H, Mariman ECM (2011) 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting. BMC Med Genomics 4:N24CrossRefGoogle Scholar
  5. 5.
    Ocak S, Friedman DB, Chen H, Ausborn JA, Hassanein M, Detry B, Weynand B, Aboubakar F, Pilette C, Sibille Y, Massion PP (2014) Discovery of new membrane-associated proteins overexpressed in small-cell lung cancer. J Thorac Oncol 9(3):324–336PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Fernando H, Wiktorowicz JE, Soman KV, Kaphalia BS, Khan MF, Ansari GAS (2013) Liver proteomics in progressive alcoholic steatosis. Toxicol Appl Pharmacol 266(3):470–480PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    O’Dwyer D, Ralton LD, O’Shea A, Murray GI (2011) The proteomics of colorectal cancer: identification of a protein signature associated with prognosis. Plos One 6(11):e27718PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Pitarch A, Jimenez A, Nombela C, Gil C (2006) Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol Cell Proteomics 5(1):79–96CrossRefPubMedGoogle Scholar
  9. 9.
    Marengo E, Robotti E, Bobba M, Milli A, Campostrini N, Righetti SC, Cecconi D, Righetti PG (2008) Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic study. Anal Bioanal Chem 390:1327–1342CrossRefPubMedGoogle Scholar
  10. 10.
    Sofiadis A, Becker S, Hellman U, Hultin-Rosenberg L, Dinets A, Hulchiy M, Zedenius J, Wallin G, Foukakis T, Hoog A, Auer G, Lehtio J, Larsson C (2012) Proteomic profiling of follicular and papillary thyroid tumors. Eur J Endocrinol 166(4):657–667PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Marengo E, Robotti E, Righetti PG, Campostrini N, Pascali J, Ponzoni M, Hamdan M, Astner H (2004) Study of proteomic changes associated with healthy and tumoral murine samples in neuroblastoma by principal component analysis and classification methods. Clin Chim Acta 345:55–67CrossRefPubMedGoogle Scholar
  12. 12.
    Marengo E, Robotti E, Bobba M, Liparota MC, Rustichelli C, Zamò A, Chilosi M, Righetti PG (2006) Multivariate statistical tools applied to the characterization of the proteomic profiles of two human lymphoma cell lines by two-dimensional gel electrophoresis. Electrophoresis 27:484–494CrossRefPubMedGoogle Scholar
  13. 13.
    Haas B, Serchi T, Wagner DR, Gilson G, Planchon S, Renaut J, Hoffmann L, Bohn T, Devaux Y (2011) Proteomic analysis of plasma samples from patients with acute myocardial infarction identifies haptoglobin as a potential prognostic biomarker. J Proteomics 75(1):229–236CrossRefPubMedGoogle Scholar
  14. 14.
    Marengo E, Robotti E, Cecconi D, Hamdan M, Scarpa A, Righetti PG (2004) Identification of the regulatory proteins in human pancreatic cancers treated with Trichostatin A by 2D-PAGE maps and multivariate statistical analysis. Anal Bioanal Chem 379:992–1003CrossRefPubMedGoogle Scholar
  15. 15.
    Schmid HR, Schmitter D, Blum O, Miller M, Vonderschmitt D (1995) Lung-tumor cells – a multivariate approach to cell classification using 2-dimensional protein pattern. Electrophoresis 16:1961–1968CrossRefPubMedGoogle Scholar
  16. 16.
    Maurer MH (2006) Software analysis of two-dimensional electrophoretic gels in proteomic experiments. Curr Bioinform 1:255–262CrossRefGoogle Scholar
  17. 17.
    Mahon P, Dupree P (2001) Quantitative and reproducible two-dimensional gel analysis using Phoretix 2D Full. Electrophoresis 22:2075–2085CrossRefPubMedGoogle Scholar
  18. 18.
    Appel RD, Vargas JR, Palagi PM et al (1997) Melanie II—a third-generation software package for analysis of two- dimensional electrophoresis images: II. Algorithms. Electrophoresis 18:2735–2748CrossRefPubMedGoogle Scholar
  19. 19.
    Jensen K, Kesmir C, Sondergaard I (1996) From image processing to classification.4. Classification of electrophoretic patterns by neural networks and statistical methods enable quality assessment of wheat varieties for breadmaking. Electrophoresis 17:694–698CrossRefPubMedGoogle Scholar
  20. 20.
    Grus FH, Augustin AJ (2000) Protein analysis methods in diagnosis of sicca syndrome. Ophthalmologe 97:54–61CrossRefPubMedGoogle Scholar
  21. 21.
    Swets D, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18:831–836CrossRefGoogle Scholar
  22. 22.
    Marengo E, Bobba M, Liparota MC, Robotti E, Righetti PG (2005) Use of Legendre moments for the fast comparison of two-dimensional polyacrylamide gel electrophoresis maps images. J Chromatogr A 1096:86–91CrossRefPubMedGoogle Scholar
  23. 23.
    Teague MR (1980) Image analysis via the general theory of moments. J Opt Soc Am 70:920–930CrossRefGoogle Scholar
  24. 24.
    Zernike F (1934) Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1:689–704CrossRefGoogle Scholar
  25. 25.
    Marengo E, Robotti E, Bobba M, Demartini M, Righetti PG (2008) A new method of comparing 2D-PAGE maps based on the computation of Zernike moments and multivariate statistical tools. Anal Bioanal Chem 391:1163–1173CrossRefPubMedGoogle Scholar
  26. 26.
    Marengo E, Cocchi M, Demartini M, Robotti E, Bobba M, Righetti PG (2011) Investigation of the applicability of Zernike moments to the classification of SDS 2D-PAGE maps. Anal Bioanal Chem 400:1419–1431CrossRefPubMedGoogle Scholar
  27. 27.
    Wee C, Paramesran R, Takeda F (2004) New computational methods for full and subset Zernike moments. Inform Sci 159:203–220CrossRefGoogle Scholar
  28. 28.
    Kan C, Srinath MD (2002) Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recogn 35:143–154CrossRefGoogle Scholar
  29. 29.
    Zenkouar H, Nachit A (1997) Images compression using moments method of orthogonal polynomials. Mat Sci Eng B Solid 49:211–215CrossRefGoogle Scholar
  30. 30.
    Yin J, De Pierro RA, Wei M (2002) Analysis for the reconstruction of a noisy signal based on orthogonal moments. Appl Math Comput 132:249–263CrossRefGoogle Scholar
  31. 31.
    Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theor 8:179–187Google Scholar
  32. 32.
    Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497CrossRefGoogle Scholar
  33. 33.
    Li BC, Shen J (1991) Fast computation of moment invariants. Pattern Recogn 24:807–813CrossRefGoogle Scholar
  34. 34.
    Chong C, Raveendran P, Mukundan R (2004) Translation and scale invariants of Legendre moments. Pattern Recogn 37:119–129CrossRefGoogle Scholar
  35. 35.
    Mukundan R, Ramakrishnan KR (1995) Computation of Legendre and Zernike moments. Pattern Recogn 28:1433–1442CrossRefGoogle Scholar
  36. 36.
    Zhou JD, Shu HZ, Luo LM, Yu WX (2002) Two new algorithms for efficient computation of Legendre moments. Pattern Recogn 35:1143–1152CrossRefGoogle Scholar
  37. 37.
    Mukundan R, Ramakrishnan KR (1998) Moment function in image analysis. World Scientific, SingaporeGoogle Scholar
  38. 38.
    Chong CW, Raveendran P, Mukundan R (2003) A comparative analysis of algorithms for fast computation of Zernike moments. Pattern Recogn 36:731–742CrossRefGoogle Scholar
  39. 39.
    Belkasim SO, Shridhar M, Ahmadi M (1991) Pattern recognition with moment invariants—a comparative study and new results. Pattern Recogn 24:1117–1138CrossRefGoogle Scholar
  40. 40.
    Teh CH, Chin RT (1988) On image analysis by the method of moments. IEEE Trans Pattern Anal Mach Intell 10:496–513CrossRefGoogle Scholar
  41. 41.
    Massart DL, Vandeginste BGM, Deming SM, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Vandeginste BGM, Massart DL, Buydens LMC, De Yong S, Lewi PJ, Smeyers-Verbeke J (1988) Handbook of chemometrics and qualimetrics: part B. Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Frank IE, Lanteri S (1989) Classification models: discriminant analysis, SIMCA, CART. Chemometr Intell Lab Syst 5:247–256CrossRefGoogle Scholar
  44. 44.
    Martens H, Naes T (1989) Multivariate calibration. Wiley, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emilio Marengo
    • 1
    Email author
  • Elisa Robotti
    • 1
  • Marco Demartini
    • 1
  1. 1.Department of Sciences and Technological InnovationUniversity of Piedmont OrientaleAlessandriaItaly

Personalised recommendations