Skip to main content

Novel Adjuvants and Immunomodulators for Veterinary Vaccines

  • Protocol
Vaccine Technologies for Veterinary Viral Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1349))

Abstract

Adjuvants are crucial for efficacy of vaccines, especially subunit and recombinant vaccines. Rational vaccine design, including knowledge-based and molecularly defined adjuvants tailored for directing and potentiating specific types of host immune responses towards the antigens included in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including mucosal surfaces. Here we describe these new developments and, when possible, relate new immunological knowledge to the many years of experience with traditional, empirical adjuvants. Finally, some protocols are given for production of emulsion (oil-based) and liposome-based adjuvant/antigen formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  2. Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  CAS  PubMed  Google Scholar 

  3. Nace G, Evankovich J, Eid R et al (2012) Dendritic cells and damage-associated molecular patterns: endogenous danger signals linking innate and adaptive immunity. J Innate Immun 4:6–15

    Article  CAS  PubMed  Google Scholar 

  4. Thakur A, Pedersen LE, Jungersen G (2012) Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 30:4907–4920

    Article  CAS  PubMed  Google Scholar 

  5. Mason PW, Chinsangaram J, Moraes MP et al (2003) Engineering better vaccines for foot-and-mouth disease. Dev Biol (Basel) 114:79–88

    CAS  Google Scholar 

  6. Kamstrup S, Frimann TH, Barfoed AM (2006) Protection of Balb/c mice against infection with FMDV by immunostimulation with CpG oligonucleotides. Antiviral Res 72:42–48

    Article  CAS  PubMed  Google Scholar 

  7. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  CAS  PubMed  Google Scholar 

  8. Van Regenmortel MH, Daney de Marcillac G (1988) An assessment of prediction methods for locating continuous epitopes in proteins. Immunol Lett 17:95–107

    Article  PubMed  Google Scholar 

  9. Freund J, Thomson KJ, Hough HB et al (1948) Antibody formation and sensitization with the aid of adjuvants. J Immunol 60:383–398

    CAS  PubMed  Google Scholar 

  10. Glenny AT, Pope CG, Waddington H et al (1926) The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 29:31–40

    Article  CAS  Google Scholar 

  11. Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19:2666–2672

    Article  CAS  PubMed  Google Scholar 

  12. Stills HF Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46:280–293

    Article  CAS  PubMed  Google Scholar 

  13. Lindblad EB (2007) Safety evaluation of vaccine adjuvants. In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley Interscience, Hoboken, NJ, pp 421–444

    Chapter  Google Scholar 

  14. Stewart-Tull DES, Shimono T, Kotani S et al (1976) Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int Archs Allergy Appl Immunol 52:118–128

    Article  Google Scholar 

  15. O’Hagan DT, Singh M (2007) MF59: a safe and potent oil-in-water emulsion adjuvant. In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley Interscience, Hoboken, NJ, pp 115–129

    Chapter  Google Scholar 

  16. Hem SL, HogenEH. (2007) Aluminum-containing adjuvants: properties, formulation, and use. In: Singh M (ed) Vaccine adjuvants and delivery systems. Hoboken, NJ: Wiley Interscience, pp. 81–114

    Google Scholar 

  17. Oleszycka E, Lavelle EC (2014) Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol 28:1–5

    Article  CAS  PubMed  Google Scholar 

  18. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  19. Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13:527–537

    Article  CAS  PubMed  Google Scholar 

  20. Christensen D, Agger EM, Andreasen LV et al (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11

    Article  CAS  PubMed  Google Scholar 

  21. Korsholm KS, Andersen PL, Christensen D (2011) Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 11:561–577

    Article  Google Scholar 

  22. Milicic A, Kaur R, Reyes-Sandoval A et al (2012) Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PLoS One 7, e34255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Korsholm KS, Hansen J, Karlsen K et al (2014) Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine 32:3927–3935

    Article  CAS  PubMed  Google Scholar 

  24. Christensen D, Foged C, Rosenkrands I et al (2010) CAF01 liposomes as a mucosal vaccine adjuvant: in vitro and in vivo investigations. Int J Pharm 390:19–24

    Article  CAS  PubMed  Google Scholar 

  25. Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIX. Vaccine 27:4388–4401

    Article  CAS  PubMed  Google Scholar 

  26. Morein B, Sundquist B, Höglund S et al (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308:457–460

    Article  CAS  PubMed  Google Scholar 

  27. Stittelaar KJ, Boes J, Kersten GF et al (2000) In vivo antibody response and in vitro CTL activation induced by selected measles vaccine candidates, prepared with purified Quil A components. Vaccine 18:2482–2493

    Article  CAS  PubMed  Google Scholar 

  28. Magnusson SE, Reimer JM, Karlsson KH et al (2013) Immune enhancing properties of the novel Matrix-M™ adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine 31:1725–1733

    Article  CAS  PubMed  Google Scholar 

  29. Madsen HB, Arboe-Andersen HM, Rozlosnik N et al (2010) Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems. Biochim Biophys Acta 1798:1779–1789

    Article  CAS  PubMed  Google Scholar 

  30. Fernández-Tejada A, Chea EK, George C et al (2014) Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 6:635–643

    Article  PubMed Central  PubMed  Google Scholar 

  31. de Liu H, Vries-Idema J, Veer W et al (2014) Influenza virosomes supplemented with GPI-0100 adjuvant: a potent vaccine formulation for antigen dose sparing. Med Microbiol Immunol 203:47–55

    Article  CAS  PubMed  Google Scholar 

  32. Chandramouli S, Medina-Selby A, Coit D et al (2013) Generation of a parvovirus B19 vaccine candidate. Vaccine 31:3872–3878

    Article  CAS  PubMed  Google Scholar 

  33. Gregory AE, Titball R, Williamson D (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 13(Article 13):1–13

    Google Scholar 

  34. De Veer M, Meeusen E (2011) New developments in vaccine research: unveiling the secret of vaccine adjuvants. Discov Med 12:195–204

    PubMed  Google Scholar 

  35. Thompson AJV, Locarnini SA (2007) Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol 85:435–445

    Article  CAS  PubMed  Google Scholar 

  36. Jonhson DA, Baldridge JR (2007) TLR4 agonists as vaccine adjuvants. In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley Interscience, Hoboken, NJ, pp 131–156

    Chapter  Google Scholar 

  37. Davidsen J, Rosenkrands I, Christensen D et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,69-dibehenate): a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31

    Article  CAS  PubMed  Google Scholar 

  38. Sorensen NS, Boas U, Heegaard PMH (2011) Enhancement of Muramyldipeptide (MDP) immunostimulatory activity by controlled multimerization on dendrimers. Macromol Biosci 11:1484–1490

    CAS  PubMed  Google Scholar 

  39. Mutwiri GK, Nichani AK, Babiuk S et al (2004) Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release 97:1–17

    Article  CAS  PubMed  Google Scholar 

  40. Alves MP, Guzylack-Piriou L, Juillard V et al (2009) Innate immune defenses induced by CpG do not promote vaccine-induced protection against foot-and-mouth disease virus in pigs. Clin Vaccine Immunol 16:1151–1157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mena A, Nichani AK, Popowych Y et al (2003) Bovine and ovine blood mononuclear leukocytes differ markedly in innate immune responses induced by class A and class B CpG-oligodeoxynucleotides. Oligonucleotides 13:245–259

    Article  CAS  PubMed  Google Scholar 

  42. Linghua Z, Xingshan T, Fengzhen Z (2008) In vivo oral administration effects of various oligodeoxynucleotides containing synthetic immunostimulatory motifs in the immune response to pseudorabies attenuated virus vaccine in newborn piglets. Vaccine 26:224–233

    Article  PubMed  Google Scholar 

  43. Sorensen NS, Skovgaard K, Heegaard PMH (2011) Porcine blood mononuclear cell responses to PAMP molecules: comparison of mRNA and protein production. Vet Immunol Immunopathol 139:296–302

    Article  CAS  PubMed  Google Scholar 

  44. Jungi TW, Farhat K, Burgener IA et al (2011) Toll-like receptors in domestic animals. Cell Tissue Res 343:107–120

    Article  CAS  PubMed  Google Scholar 

  45. Desel D, Werninghaus K, Ritter M et al (2013) The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 8(1), e53531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Goetz KB, Pflleiderer M, Schneider CK (2010) First-in-human clinical trials with vaccines: what regulators want. Nat Biotechnol 28(9):910–916

    Article  CAS  PubMed  Google Scholar 

  47. Koh YT, Higgins SA, Weber JS et al (2006) Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund’s adjuvant. J Transl Med 4:12. doi:10.1186/1479-5876-4-42

    Article  Google Scholar 

  48. Schijns VEJC, Strioga M, Ascarateil S (2014) Oil-based emulsion vaccine adjuvants. Curr Protoc Immunol 106:2.18.1–2.18.7

    Article  Google Scholar 

  49. Riber U, Boesen HT, Jakobsen JT et al (2011) Co-incubation with IL-18 potentiates antigen-specific IFN-γ response in a whole-blood stimulation assay for measurement of cell-mediated immune responses in pigs experimentally infected with Lawsonia intracellularis. Vet Immunol Immunopathol 139:257–263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the EU Network of Excellence, EPIZONE (Contract No FOOD-CT-2006-016236). Dr. Nanna Skall Sørensen (DTU Vet) is thanked for allowing access to unpublished data (Figure 2b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. H. Heegaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Heegaard, P.M.H., Fang, Y., Jungersen, G. (2016). Novel Adjuvants and Immunomodulators for Veterinary Vaccines. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 1349. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3008-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3008-1_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3007-4

  • Online ISBN: 978-1-4939-3008-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics