Skip to main content

A Procedure for Developing Quantitative Near Infrared (NIR) Methods for Pharmaceutical Products

  • Protocol
Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture

Abstract

The pharmaceutical industry uses procedures to describe all the instructions needed to perform a process in a consistent manner. Procedures are based on process knowledge and the desire to consistently meet desired specifications. This chapter proposes a procedure for the development of NIR partial least squares (PLS) calibration models for pharmaceutical applications. The chapter captures the lessons learned for more than a decade in studies where NIR spectroscopy has been used for quantitative determinations of drug concentration, moisture, polymorphs, and other important applications. Two examples of recent initiatives to develop NIR calibration models in a more efficient manner reducing the number of calibration samples are also discussed. The procedure differs from previously published guidelines since it is based on specific examples of method validations for pharmaceutical processes and provides clear instructions for method development and validation. The procedure and tutorial should advance the implementation of near infrared spectroscopic (NIRS) quantitative methods in the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanco M, Romero MA (2001) Near-infrared libraries in the pharmaceutical industry: a solution for identity confirmation. Analyst 126(12):2212–2217

    CAS  PubMed  Google Scholar 

  2. Green RL et al (2005) In-line monitoring of moisture content in fluid bed dryers using near-ir spectroscopy with consideration of sampling effects on method accuracy. Anal Chem 77(14):4515–4522

    CAS  PubMed  Google Scholar 

  3. Alcala M et al (2010) On-line monitoring of a granulation process by NIR spectroscopy. J Pharm Sci 99(1):336–345

    CAS  PubMed  Google Scholar 

  4. Burgbacher J, Wiss J (2008) Industrial applications of online monitoring of drying processes of drug substances using NIR. Org Process Res Dev 12(2):235–242

    CAS  Google Scholar 

  5. Sekulic SS et al (1996) On-line monitoring of powder blend homogeneity by near-infrared spectroscopy. Anal Chem 68(3):509–513

    CAS  PubMed  Google Scholar 

  6. Shi Z et al (2008) Process characterization of powder blending by near-infrared spectroscopy: blend end-points and beyond. J Pharm Biomed Anal 47(4–5):738–745

    CAS  PubMed  Google Scholar 

  7. Dziki W et al (2000) The use of near-infrared spectroscopy to monitor the mobility of water within the sarafloxacin crystal lattice. J Pharm Biomed Anal 22(5):829–848

    CAS  PubMed  Google Scholar 

  8. Barajas MJ et al (2007) Near-infrared spectroscopic method for real-time monitoring of pharmaceutical powders during voiding. Appl Spectrosc 61(5):490–496

    CAS  PubMed  Google Scholar 

  9. Esbensen KH, Paasch-Mortensen P (2010) Process sampling: theory of sampling – the Missing Link in Process Analytical Technologies (PAT). In: Process analytical technology. John Wiley & Sons, New York, NY, pp 37–80

    Google Scholar 

  10. Petersen L, Minkkinen P, Esbensen KH (2005) Representative sampling for reliable data analysis: theory of sampling. Chemom Intell Lab Syst 77(1–2):261–277

    CAS  Google Scholar 

  11. Petersen L, Esbensen KH (2005) Representative process sampling for reliable data analysis—a tutorial. J Chemometr 19(11-12):625–647

    CAS  Google Scholar 

  12. Zhou X, Hines P, Borer MW (1998) Moisture determination in hygroscopic drug substances by near infrared spectroscopy. J Pharm Biomed Anal 17(2):219–225

    CAS  PubMed  Google Scholar 

  13. Williams PC, Norris KH (2001) Near-infrared technology: in the agricultural and food industries. American Association of Cereal Chemists, St. Paul, MN, pp 19–37

    Google Scholar 

  14. Christy AA (2010) New insights into the surface functionalities and adsorption evolution of water molecules on silica gel surface: a study by second derivative near infrared spectroscopy. Vib Spectrosc 54(1):42–49

    CAS  Google Scholar 

  15. Weyer LG, Lo SC (2006) Spectra–structure correlations in the near-infrared. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  16. Alcalà M et al (2006) Near-infrared spectroscopy in laboratory and process analysis. In: Encyclopedia of analytical chemistry. John Wiley & Sons, New York, NY

    Google Scholar 

  17. Dahm DJ (2013) Review: explaining some light scattering properties of milk using representative layer theory. J Near Infrared Spectrosc 21(5):322–339

    Google Scholar 

  18. Dahm KD, Dahm DJ (2013) Separating the effects of scatter and absorption using the representative layer. J Near Infrared Spectrosc 21(5):351–357

    CAS  Google Scholar 

  19. Muzzio FJ et al (2003) Sampling and characterization of pharmaceutical powders and granular blends. Int J Pharm 250(1):51–64

    CAS  PubMed  Google Scholar 

  20. Davies AMC, Miller CE (1988) Tentative assignment of the 1440-nm absorption band in the near-infrared spectrum of crystalline sucrose. Appl Spectrosc 42(4):703–704

    CAS  Google Scholar 

  21. Pasikatan MS, Steele JL, Spillmand CK, Haquee E (2001) Near Infrared Reflectance Spectroscopy for online particle size analysis of powders and ground material. J Near Infrared Spectrosc 9:153–164

    CAS  Google Scholar 

  22. Blanco M, Villar A (2003) Development and validation of a method for the polymorphic analysis of pharmaceutical preparations using near infrared spectroscopy. J Pharm Sci 92(4):823–830

    CAS  PubMed  Google Scholar 

  23. EMEA (2012) Guideline on the use of Near Infrared Spectroscopy (NIRS) by the pharmaceutical industry and the data requirements for new submissions and variations. EMEA, London

    Google Scholar 

  24. Broad N (2002) Guidelines for the development and validation of near-infrared spectroscopic methods in the pharmaceutical industry. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  25. ASTM (2002) Standard practice for maintaining constant relative humidity by means of aqueous solutions. ASTM, West Conshohocken, PA

    Google Scholar 

  26. Beebe KR, Kowalski BR (1987) An introduction to multivariate calibration and analysis. Anal Chem 59(17):1007A–1017A

    CAS  Google Scholar 

  27. Martens H, Naes T (1989) Multivariate calibration. Wiley, New York, NY

    Google Scholar 

  28. Kramer R (1998) Chemometric techniques for quantitative analysis. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  29. Broad NW et al (2001) Application of transmission near-infrared spectroscopy to uniformity of content testing of intact steroid tablets. Analyst 126(12):2207–2211

    CAS  PubMed  Google Scholar 

  30. Mateo-Ortiz D et al (2014) Analysis of powder phenomena inside a Fette 3090 feed frame using in-line NIR spectroscopy. J Pharm Biomed Anal 100:40–49

    CAS  PubMed  Google Scholar 

  31. Xiang D et al (2009) Robust calibration design in the pharmaceutical quantitative measurements with near-infrared (NIR) spectroscopy: avoiding the chemometric pitfalls. J Pharm Sci 98(3):1155–1166

    CAS  PubMed  Google Scholar 

  32. Bondi RW Jr et al (2012) Effect of experimental design on the prediction performance of calibration models based on near-infrared spectroscopy for pharmaceutical applications. Appl Spectrosc 66(12):1442–1453

    CAS  PubMed  Google Scholar 

  33. Sulub Y et al (2009) Real-time on-line blend uniformity monitoring using near-infrared reflectance spectrometry: a noninvasive off-line calibration approach. J Pharm Biomed Anal 49(1):48–54

    CAS  PubMed  Google Scholar 

  34. Blanco M, Bautista M, Alcala M (2008) Preparing calibration sets for use in pharmaceutical analysis by NIR spectroscopy. J Pharm Sci 97(3):1236–1245

    CAS  PubMed  Google Scholar 

  35. Williams PC, Norris KH (2001) Near-infrared technology: in the agricultural and food industries. American Association of Cereal Chemists, Paul, MN, pp 145–169

    Google Scholar 

  36. Blanco M et al (2001) Influence of the procedure used to prepare the calibration sample set on the performance of near infrared spectroscopy in quantitative pharmaceutical analyses. Analyst 126(7):1129–1134

    CAS  PubMed  Google Scholar 

  37. Blanco M, Romero MA, Alcala M (2004) Strategies for constructing the calibration set for a near infrared spectroscopic quantitation method. Talanta 64(3):597–602

    CAS  PubMed  Google Scholar 

  38. Xiang D et al (2009) Evaluation of transmission and reflection modalities for measuring content uniformity of pharmaceutical tablets with near-infrared spectroscopy. Appl Spectrosc 63(1):33–47

    CAS  PubMed  Google Scholar 

  39. Darvesh AS, Saraf MN, Menon M (1999) Toxicological evaluation of film forming methacrylic acid copolymers. Ind J Pharm Sci 61(3):179–183

    CAS  Google Scholar 

  40. Ritchie GE et al (2002) Validation of a near-infrared transmission spectroscopic procedure. Part B: Application to alternate content uniformity and release assay methods for pharmaceutical solid dosage forms. J Pharm Biomed Anal 29(1-2):159–171

    CAS  PubMed  Google Scholar 

  41. Meza CP, Santos MA, Romanach RJ (2006) Quantitation of drug content in a low dosage formulation by transmission near infrared spectroscopy. AAPS PharmSciTech 7(1):E29

    PubMed  Google Scholar 

  42. Griffiths PR, De Haseth JA (1986) Fourier transform infrared spectrometry. Wiley-Interscience, New York, NY

    Google Scholar 

  43. Blanco M et al (2006) A process analytical technology approach based on near infrared spectroscopy: tablet hardness, content uniformity, and dissolution test measurements of intact tablets. J Pharm Sci 95(10):2137–2144

    CAS  PubMed  Google Scholar 

  44. Vanarase AU et al (2010) Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy. Chem Eng Sci 65(21):5728–5733

    CAS  Google Scholar 

  45. Alcala M et al (2008) Analysis of low content drug tablets by transmission near infrared spectroscopy: selection of calibration ranges according to multivariate detection and quantitation limits of PLS models. J Pharm Sci 97(12):5318–5327

    CAS  PubMed  Google Scholar 

  46. Iyer M, Morris H, Drennen J III (2002) Solid dosage form analysis by near infrared spectroscopy: comparison of reflectance and transmittance measurements including the determination of effective sample mass. J Near Infrared Spectrosc 10(4):233–245

    CAS  Google Scholar 

  47. Popo M et al (2002) Blend uniformity analysis using stream sampling and near infrared spectroscopy. AAPS PharmSciTech 3(3):E24

    PubMed  Google Scholar 

  48. Bellamy LJ, Nordon A, Littlejohn D (2008) Real-time monitoring of powder mixing in a convective blender using non-invasive reflectance NIR spectrometry. Analyst 133(1):58–64

    CAS  PubMed  Google Scholar 

  49. Berntsson O et al (2002) Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy. Powder Technol 123(2–3):185–193

    CAS  Google Scholar 

  50. Miller CE (2010) Chemometrics in process analytical technology (PAT). In: Process analytical technology. John Wiley & Sons, New York, NY, pp 353–438

    Google Scholar 

  51. Momose W et al (2011) Process analytical technology applied for end-point detection of pharmaceutical blending by combining two calibration-free methods: simultaneously monitoring specific near-infrared peak intensity and moving block standard deviation. Powder Technol 210(2):122–131

    CAS  Google Scholar 

  52. Blanco M, Alcala M, Bautista M (2008) Pharmaceutical gel analysis by NIR spectroscopy. Determination of the active principle and low concentration of preservatives. Eur J Pharm Sci 33(4-5):409–414

    CAS  PubMed  Google Scholar 

  53. Blanco M et al (1997) Effect of data preprocessing methods in near-infrared diffuse reflectance spectroscopy for the determination of the active compound in a pharmaceutical preparation. Appl Spectrosc 51(2):240–246

    CAS  Google Scholar 

  54. Blanco M et al (1999) Development and validation of a method for the analysis of a pharmaceutical preparation by near-infrared diffuse reflectance spectroscopy. J Pharm Sci 88(5):551–556

    CAS  PubMed  Google Scholar 

  55. Duckworth JH (1998) 4 - Spectroscopic quantitative analysis. In: Workman J, Springsteen AW (eds) Applied spectroscopy. Academic, San Diego, CA, pp 93–163

    Google Scholar 

  56. Dahm DJ, Dahm KD (2007) Interpreting diffuse reflectance and transmittance: a theoretical introduction to absorption spectroscopy of scattering materials. NIR, Chichester

    Google Scholar 

  57. Ropero J et al (2011) Near-infrared chemical imaging slope as a new method to study tablet compaction and tablet relaxation. Appl Spectrosc 65(4):459–465

    CAS  PubMed  Google Scholar 

  58. Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76(3):503–514

    Google Scholar 

  59. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    CAS  Google Scholar 

  60. Mark H (1991) Principles and practice of spectroscopic calibration. Wiley, New York, NY

    Google Scholar 

  61. Bu D, Wan B, McGeorge G (2013) A discussion on the use of prediction uncertainty estimation of NIR data in partial least squares for quantitative pharmaceutical tablet assay methods. Chemom Intell Lab Syst 120:84–91

    CAS  Google Scholar 

  62. U.S. Department of Health and Human Services, Food and Drug Administration (2012) Guideline on the use of Near Infrared Spectroscopy (NIRS) by the pharmaceutical industry and the data requirements for new submissions and variations. E.C.C.Q, London, Rev2

    Google Scholar 

  63. Markl D et al (2013) Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech 14(3):1034–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Karande AD, Heng PW, Liew CV (2010) In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy: real time monitoring of tabletting process. Int J Pharm 396(1-2):63–74

    CAS  PubMed  Google Scholar 

  65. Liew CV, Karande AD, Heng PWS (2010) In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy. Int J Pharm 386(1–2):138–148

    CAS  PubMed  Google Scholar 

  66. Blanco M, Peguero A (2010) Analysis of pharmaceuticals by NIR spectroscopy without a reference method. TrAC Trends Anal Chem 29(10):1127–1136

    CAS  Google Scholar 

  67. Blanco M, Peguero A (2010) Influence of physical factors on the accuracy of calibration models for NIR spectroscopy. J Pharm Biomed Anal 52(1):59–65

    CAS  PubMed  Google Scholar 

  68. Blanco M, Cueva-Mestanza R, Peguero A (2010) Controlling individual steps in the production process of paracetamol tablets by use of NIR spectroscopy. J Pharm Biomed Anal 51(4):797–804

    CAS  PubMed  Google Scholar 

  69. Li Q et al (2008) Excess infrared absorption spectroscopy and its applications in the studies of hydrogen bonds in alcohol-containing binary mixtures. Appl Spectrosc 62(2):166–170

    CAS  PubMed  Google Scholar 

  70. Muteki K et al (2013) Mixture component prediction using iterative optimization technology (calibration-free/minimum approach). Ind Eng Chem Res 52(35):12258–12268

    CAS  Google Scholar 

Download references

Acknowledgements

This work was performed thanks to the support of the NSF ERC Structured Organic Particulate Systems EEC-0540855 grant. The authors thank two industrial advisors in this grant: Dongsheng Bu from BMS and Pius Tse from Merck for carefully reviewing the manuscript. Graduate student Krizia Karry and Yusuf Suluf (SABIC Innovative Plastics) are also thanked for their reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo J. Romañach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Romañach, R.J., Román-Ospino, A.D., Alcalà, M. (2016). A Procedure for Developing Quantitative Near Infrared (NIR) Methods for Pharmaceutical Products. In: Ierapetritou, M.G., Ramachandran, R. (eds) Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2996-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2996-2_5

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2995-5

  • Online ISBN: 978-1-4939-2996-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics