Skip to main content

Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells

  • Protocol
VEGF Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1332))

Abstract

Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62:179–213

    Article  PubMed  Google Scholar 

  2. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    CAS  PubMed  Google Scholar 

  3. Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kanno S, Oda N, Abe M et al (2000) Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial calls. Oncogene 19:2138–2146

    Article  CAS  PubMed  Google Scholar 

  5. Shalaby F, Rossant J, Yamaguchi TP et al (1995) Failure of blood-island formation and vasculogenesis in flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  6. Fong GH, Rossant J, Gertsenstein M et al (1995) Role of the flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  CAS  PubMed  Google Scholar 

  7. Padera TP, Jain RK (2008) VEGFR3: a new target for antiangiogenesis therapy? Dev Cell 15:178–179

    Article  CAS  PubMed  Google Scholar 

  8. Devries C, Escobedo JA, Ueno H et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth-factor. Science 255:989–991

    Article  CAS  Google Scholar 

  9. Waltenberger J, Claessonwelsh L, Siegbahn A et al (1994) Different signal-transduction properties of kdr and flt1, 2 receptors for vascular endothelial growth-factor. J Biol Chem 269:26988–26995

    CAS  PubMed  Google Scholar 

  10. Rahimi N (2006) VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci 11:818–829

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Santambrogio M, Valdembri D, Serini G (2011) Increasing traffic on vascular routes. Mol Aspects Med 32:112–122

    Article  PubMed  Google Scholar 

  12. Gampel A, Moss L, Jones MC et al (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631

    Article  CAS  PubMed  Google Scholar 

  13. Ewan LC, Jopling HM, Jia H et al (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282

    Article  CAS  PubMed  Google Scholar 

  14. Bruns AF, Herbert SP, Odell AF et al (2010) Ligand-stimulated VEGFR2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic 11:161–174

    Article  CAS  PubMed  Google Scholar 

  15. Scott A, Mellor H (2009) VEGF receptor trafficking in angiogenesis. Biochem Soc Trans 37:1184–1188

    Article  CAS  PubMed  Google Scholar 

  16. Jopling HM, Odell AF, Hooper NM et al (2009) Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arterioscler Thromb Vasc Biol 29:1119–1124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bruns AF, Bao L, Walker JH et al (2009) VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans 37:1193–1197

    Article  CAS  PubMed  Google Scholar 

  18. Jaffe EA, Nachman RL, Becker CG et al (1973) Culture of human endothelial cells derived from umbilical veins—identification by morphologic and immunological criteria. J Clin Invest 52:2745–2756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Howell GJ, Herbert SP, Smith JM et al (2004) Endothelial cell confluence regulates Weibel-Palade body formation. Mol Membr Biol 21:413–421

    Article  CAS  PubMed  Google Scholar 

  20. Nakache M, Schreiber AB, Gaub H et al (1985) Heterogeneity of membrane phospholipid mobility in endothelial-cells depends on cell substrate. Nature 317:75–77

    Article  CAS  PubMed  Google Scholar 

  21. Latham AM, Odell AF, Mughal NA et al (2012) A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A. Exp Cell Res 318:2297–2311

    Article  CAS  PubMed  Google Scholar 

  22. Napione L, Pavan S, Veglio A et al (2012) Unraveling the influence of endothelial cell density on VEGF-A signaling. Blood 119:5599–5607

    Article  CAS  PubMed  Google Scholar 

  23. Lee S, Mandic J, Van Vliet KJ (2007) Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci U S A 104:9609–9614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Heart Research UK PhD studentship (G.W.F.) and British Heart Foundation project grants (S.P. and S.B.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivasan Ponnambalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fearnley, G.W., Wheatcroft, S.B., Ponnambalam, S. (2015). Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells. In: Fiedler, L. (eds) VEGF Signaling. Methods in Molecular Biology, vol 1332. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2917-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2917-7_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2916-0

  • Online ISBN: 978-1-4939-2917-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics