Skip to main content

Genetic Mosaic Analysis of Stem Cell Lineages in the Drosophila Ovary

  • Protocol
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1328))

Abstract

Genetic mosaic analyses represent an invaluable approach for the study of stem cell lineages in the Drosophila ovary. The generation of readily identifiable, homozygous mutant cells in the context of wild-type ovarian tissues within intact organisms allows the pinpointing of cellular requirements for gene function, which is particularly important for understanding the physiological control of stem cells and their progeny. Here, we provide a step-by-step guide to the generation and analysis of genetically mosaic ovaries using flippase (FLP)/FLP recognition target (FRT)-mediated recombination in adult Drosophila melanogaster, with a focus on the processes of oogenesis that are controlled by diet-dependent factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perrimon N (1998) Creating mosaics in Drosophila. Int J Dev Biol 42:243–247

    CAS  PubMed  Google Scholar 

  2. Theodosiou NA, Xu T (1998) Use of FLP/FRT system to study Drosophila development. Methods 14:355–365

    Google Scholar 

  3. Le Lievre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  4. Lehmann R, Nusslein-Volhard C (1987) hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev Biol 119:402–417

    Google Scholar 

  5. Hadorn E (1968) Transdetermination in cells. Sci Am 219:110–114 passim

    Article  CAS  PubMed  Google Scholar 

  6. Simon MA, Bowtell DD, Dodson GS et al (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67:701–716

    Article  CAS  PubMed  Google Scholar 

  7. Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117:1223–1237

    CAS  PubMed  Google Scholar 

  8. Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254

    Article  CAS  PubMed  Google Scholar 

  9. Evans CJ, Olson JM, Ngo KT et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72:527–540

    Article  CAS  PubMed  Google Scholar 

  11. Ables ET, Drummond-Barbosa D (2010) The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila. Cell Stem Cell 7:581–592

    Google Scholar 

  12. Ables ET, Drummond-Barbosa D (2013) Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 140:530–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hsu HJ, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 106:1117–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hsu HJ, Drummond-Barbosa D (2011) Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands. Dev Biol 350:290–300

    Article  CAS  PubMed  Google Scholar 

  15. Hsu HJ, LaFever L, Drummond-Barbosa D (2008) Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 313:700–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073

    Article  CAS  PubMed  Google Scholar 

  17. LaFever L, Feoktistov A, Hsu HJ et al (2010) Specific roles of Target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary. Development 137:2117–2126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Margolis J, Spradling A (1995) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121:3797–3807

    CAS  PubMed  Google Scholar 

  19. Spradling AC (1993) Developmental genetics of oogenesis. In: Bate M (ed) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  20. Haack T, Bergstralh DT, St Johnston D (2013) Damage to the Drosophila follicle cell epithelium produces “false clones” with apparent polarity phenotypes. Biol Open 2:1313–1320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cummings MR, Brown NM, King RC (1971) The cytology of the vitellogenic stages of oogenesis in Drosophila melanogaster. 3. Formation of the vitelline membrane. Z Zellforsch Mikrosk Anat 118:482–492

    Article  CAS  PubMed  Google Scholar 

  22. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330

    Article  CAS  PubMed  Google Scholar 

  23. Sahai-Hernandez P, Castanieto A, Nystul TG (2012) Drosophila models of epithelial stem cells and their niches. Wiley Interdiscip Rev Dev Biol 1:447–457

    Article  CAS  PubMed  Google Scholar 

  24. de Cuevas M, Spradling AC (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125:2781–2789

    PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Drummond-Barbosa lab for critical comments during the preparation of this manuscript. This work was supported by National Institutes of Health (NIH) grant R01 GM069875 (D.D.B.). K.L. was supported by NIH training grant T32CA009110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Drummond-Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Laws, K.M., Drummond-Barbosa, D. (2015). Genetic Mosaic Analysis of Stem Cell Lineages in the Drosophila Ovary. In: Bratu, D., McNeil, G. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 1328. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2851-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2851-4_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2850-7

  • Online ISBN: 978-1-4939-2851-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics