Skip to main content

Immunohistochemical Detection of Oxidized Forms of 5-Methylcytosine in Embryonic and Adult Brain Tissue

  • Protocol
Epigenetic Methods in Neuroscience Research

Part of the book series: Neuromethods ((NM,volume 105))

Abstract

DNA methylation (5-methylcytosine, 5mC) is a major epigenetic modification of the eukaryotic genome associated with gene repression. Ten-eleven translocation proteins (Tet1/2/3) can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Recent studies demonstrate that 5hmC is particularly enriched in neuronal cells and imply the involvement of this mark in transcriptional regulation taking place within the mammalian brain. Although a number of biochemical and antibody-based approaches have been successfully used to study the global content and genomic distributions of 5hmC in various contexts, most of these techniques do not provide any spatial information on the levels of this mark in different cell types. Here we describe a method of sensitive immunochemical detection of 5hmC/5fC/5caC in brain tissue based on the use of peroxidase-conjugated secondary antibodies and tyramide signal amplification. This technique can be instrumental in determining the relative enrichments of oxidized forms of 5mC in different brain cell types, effectively complementing other established approaches to investigate the functions of these marks in embryonic and adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  2. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  3. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  4. Feng J et al (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746

    Article  CAS  PubMed  Google Scholar 

  5. Hutnick LK et al (2009) DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet 18:2875–2888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fan G et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797

    CAS  PubMed  Google Scholar 

  8. Levenson JM et al (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    Article  CAS  PubMed  Google Scholar 

  9. Fan G et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356

    Article  CAS  PubMed  Google Scholar 

  10. Zhao X et al (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 100:6777–6782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Amir RE et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  12. Chouliaras L et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34:2091–2099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fuso A et al (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204

    Article  CAS  PubMed  Google Scholar 

  14. Chen KL et al (2009) The epigenetic effects of amyloid-beta (1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 378:57–61

    Article  CAS  PubMed  Google Scholar 

  15. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  16. Jowaed A et al (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30:6355–6359

    Article  CAS  PubMed  Google Scholar 

  17. Reik W et al (1993) Age at onset in Huntington’s disease and methylation at D4S95. J Med Genet 30:185–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nestor CE et al (2012) Tissue-type is a major modifier of the 5-Hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ficz G et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402

    Article  CAS  PubMed  Google Scholar 

  23. Globisch D et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Song CX et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Munzel M et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49:5375–5377

    Article  PubMed  Google Scholar 

  26. Stroud H et al (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pastor WA et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Williams K et al (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473:343–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Szulwach KE et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 6146:1237905

    Article  Google Scholar 

  31. Hahn MA et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mellén M et al (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bradley-Whitman MA, Lovell MA (2013) Epigenetic changes in the progression of Alzheimer’s disease. Mech Ageing Dev 134:486–495

    Article  CAS  PubMed  Google Scholar 

  34. Villar-Menéndez I et al (2013) Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromolecular Med 15:295–309

    Article  PubMed  Google Scholar 

  35. Wang F et al (2013) Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet 22:3641–3653

    Article  CAS  PubMed  Google Scholar 

  36. Orr BA et al (2012) Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 7:e41036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Müller T et al (2013) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181:675–683

    Article  Google Scholar 

  38. Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 6047:1300–1303

    Article  Google Scholar 

  39. He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 6047:1303–1307

    Article  Google Scholar 

  40. Shen L et al (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950

    Article  CAS  PubMed  Google Scholar 

  42. Spruijt CG et al (2012) Dynamic readers for 5-(Hydroxy)Methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    Article  Google Scholar 

  43. Yu M et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Booth MJ et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  CAS  PubMed  Google Scholar 

  45. Lu X et al (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 26:9315–9317

    Article  Google Scholar 

  46. Szwagierczak A et al (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38:e181

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ruzov A et al (2011) Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res 21:1332–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Santos F, Dean W (2006) Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. Nuclear reprogramming methods and Protocols. Humana Press, Totowa, NJ, pp 129–137

    Google Scholar 

  49. Almeida RD et al (2012) Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 7:137–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Paul De Sousa (University of Edinburgh), Rimple D’Almeida, Rebecca Trueman (University of Nottingham), the Histology team of MRC Human Reproductive Sciences Unit (Edinburgh), and the team of Advanced Microscopy Unit (School of Life Sciences, University of Nottingham) for help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Ruzov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abakir, A., Wheldon, L.M., Ruzov, A. (2016). Immunohistochemical Detection of Oxidized Forms of 5-Methylcytosine in Embryonic and Adult Brain Tissue. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics