Skip to main content

Mammalian Genome Plasticity: Expression Analysis of Transposable Elements

  • Protocol
Epigenetic Methods in Neuroscience Research

Part of the book series: Neuromethods ((NM,volume 105))

  • 1186 Accesses

Abstract

Transposable elements (TEs) are mobile genetic elements, which constitute the single largest fraction of the mammalian genome. Though long assumed to be silent junk or parasitic, recent research has established that most of these elements are transcribed, often in a cell- and tissue-specific fashion and that this expression appears to be regulated in response to environmental influences. Therefore, it seems quite possible that these elements might prove to have a functional role in mammalian physiology and cell biology. Transposons have also been identified as pathogenic factors in both humans and animal models of diseases from cancer to neurodegeneration. These findings have stimulated further interest in transposon biology and created the need for further dissemination of the methods for analysis of TE expression, which is the goal of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurka J et al (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1-4):462–467

    Article  CAS  PubMed  Google Scholar 

  2. Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12(9):615–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  4. Waterston RH et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  5. Gibbs RA et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  CAS  PubMed  Google Scholar 

  6. Nellaker C et al (2012) The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 13(6):R45

    Article  PubMed Central  PubMed  Google Scholar 

  7. McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  CAS  PubMed  Google Scholar 

  8. Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161(3841):529–540

    Article  CAS  PubMed  Google Scholar 

  9. Grimaldi G, Singer MF (1982) A monkey Alu sequence is flanked by 13-base pair direct repeats by an interrupted alpha-satellite DNA sequence. Proc Natl Acad Sci U S A 79(5):1497–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Boeke JD et al (1985) Ty elements transpose through an RNA intermediate. Cell 40(3):491–500

    Article  CAS  PubMed  Google Scholar 

  11. Daniels GR, Deininger PL (1985) Repeat sequence families derived from mammalian tRNA genes. Nature 317(6040):819–822

    Article  CAS  PubMed  Google Scholar 

  12. Kazazian HH Jr et al (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332(6160):164–166

    Article  CAS  PubMed  Google Scholar 

  13. Xiong YE, Eickbush TH (1988) Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55(2):235–246

    Article  CAS  PubMed  Google Scholar 

  14. Britten RJ, Stout DB, Davidson EH (1989) The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci U S A 86(10):3718–3722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dombroski BA et al (1991) Isolation of an active human transposable element. Science 254(5039):1805–1808

    Article  CAS  PubMed  Google Scholar 

  16. Batzer MA et al (1996) Genetic variation of recent Alu insertions in human populations. J Mol Evol 42(1):22–29

    Article  CAS  PubMed  Google Scholar 

  17. Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283(5407):1530–1534

    Article  CAS  PubMed  Google Scholar 

  18. Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284(5757):604–607

    Article  CAS  PubMed  Google Scholar 

  19. Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  20. Muotri AR et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435(7044):903–910

    Article  CAS  PubMed  Google Scholar 

  21. Singer T et al (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33(8):345–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3(6):e181

    Article  PubMed Central  PubMed  Google Scholar 

  23. Heard E et al (2010) Ten years of genetics and genomics: what have we achieved and where are we heading? Nat Rev Genet 11(10):723–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Iskow RC et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141(7):1253–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ewing AD, Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20(9):1262–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Beck CR et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141(7):1159–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huang CR et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141(7):1171–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Faulkner GJ et al (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41(5):563–571

    Article  CAS  PubMed  Google Scholar 

  29. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Thurman RE et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hunter RG et al (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A 109(43):17657–17662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hunter RG, McEwen BS, Pfaff DW (2013) Environmental stress and transposon transcription in the mammalian brain. Mob Genet Elements 3(2):e24555

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ponomarev I et al (2010) Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder. Neuropsychopharmacology 35(6):1402–1411

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ponomarev I et al (2012) Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci 32(5):1884–1897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Reilly MT et al (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33(45):17577–17586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Stetson DB (2012) Endogenous retroelements and autoimmune disease. Curr Opin Immunol 24(6):692–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dumesic PA, Madhani HD (2014) Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem Sci 39(1):25–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dagerlind A et al (1992) Sensitive mRNA detection using unfixed tissue: combined radioactive and non-radioactive in situ hybridization histochemistry. Histochemistry 98(1):39–49

    Google Scholar 

  39. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25(2):169–193

    Article  CAS  PubMed  Google Scholar 

  40. Henegariu O et al (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23(3):504–511

    CAS  PubMed  Google Scholar 

  41. Rowe HM et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463(7278):237–240

    Article  CAS  PubMed  Google Scholar 

  42. Ye J et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13(1):134

    Article  CAS  Google Scholar 

  43. IDT. PrimerQuest® program. 2012. Accessed on 1 July, 2014, from: http://www.idtdna.com/Scitools

  44. Heid CA et al (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    Article  CAS  PubMed  Google Scholar 

  45. Medhurst AD et al (2000) The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J Neurosci Methods 98(1):9–20

    Article  CAS  PubMed  Google Scholar 

  46. Evrony GD et al (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151(3):483–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pohl G, Shih Ie M (2004) Principle and applications of digital PCR. Expert Rev Mol Diagn 4(1):41–47

    Article  CAS  PubMed  Google Scholar 

  48. Gnanakkan VP et al (2013) TE-array – a high throughput tool to study transposon transcription. BMC Genomics 14:869

    Article  PubMed Central  PubMed  Google Scholar 

  49. DeBerardinis RJ et al (1998) Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat Genet 20(3):288–290

    Article  CAS  PubMed  Google Scholar 

  50. Mortazavi A et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  51. Marioni JC et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Li H et al (2008) Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 105(51):20179–20184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Chaparro C, Sabot F (2012) Methods and software in NGS for TE analysis. In: Bigot Y (ed) Mobile genetic elements. Springer, New York, NY

    Google Scholar 

  54. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Milne TA, Zhao K, Hess JL (2009) Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins. Methods Mol Biol 538:409–423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lynch VJ et al (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159

    Article  CAS  PubMed  Google Scholar 

  57. Sienski G, Donertas D, Brennecke J (2012) Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151(5):964–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Zhang Y et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed Central  PubMed  Google Scholar 

  59. Blankenberg D et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. Chapter 19: Unit 19 10 1–21

    Google Scholar 

  60. Giardine B et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed Central  PubMed  Google Scholar 

  62. Bonner WA et al (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43(3):404–409

    Article  CAS  PubMed  Google Scholar 

  63. Smit A, Hubley R, Green P. RepeatMasker Open-3.0. 1996–2010. Accessed on 1 July, 2014, from: http://www.repeatmasker.org

  64. Dai L et al (2014) Expression and detection of LINE-1 ORF-encoded proteins. Mob Genet Elements 4:e29319

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Griffiths, B.B., Hunter, R.G. (2016). Mammalian Genome Plasticity: Expression Analysis of Transposable Elements. In: Karpova, N. (eds) Epigenetic Methods in Neuroscience Research. Neuromethods, vol 105. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2754-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2754-8_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2753-1

  • Online ISBN: 978-1-4939-2754-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics