Skip to main content

Protein Engineering and Selection Using Yeast Surface Display

  • Protocol
Yeast Surface Display

Abstract

Yeast surface display is a powerful technology for engineering a broad range of protein scaffolds. This protocol describes the process for de novo isolation of protein binders from large combinatorial libraries displayed on yeast by using magnetic bead separation followed by flow cytometry-based selection. The biophysical properties of isolated single clones are subsequently characterized, and desired properties are further enhanced through successive rounds of mutagenesis and flow cytometry selections, resulting in protein binders with increased stability, affinity, and specificity for target proteins of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boder ET, Raeeszadeh-Sarmazdeh M, Price JV (2012) Engineering antibodies by yeast display. Arch Biochem Biophys 526:99–106. doi:10.1016/j.abb.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  2. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26. doi:10.1016/j.ymeth.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  3. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. doi:10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  4. Kieke MC, Cho BK, Boder ET et al (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  CAS  PubMed  Google Scholar 

  5. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705. doi:10.1073/pnas.170297297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Holler PD, Holman PO, Shusta EV et al (2000) In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc Natl Acad Sci U S A 97:5387–5392. doi:10.1073/pnas.080078297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Graff CP, Chester K, Begent R et al (2004) Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17:293–304. doi:10.1093/protein/gzh038

    Article  CAS  PubMed  Google Scholar 

  8. Feldhaus MJ, Siegel RW, Opresko LK et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170. doi:10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  9. van den Beucken T, Pieters H, Steukers M et al (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294

    Article  PubMed  Google Scholar 

  10. Blaise L, Wehnert A, Steukers MP et al (2004) Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments. Gene 342:211–218. doi:10.1016/j.gene.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  11. Weaver-Feldhaus JM, Lou J, Coleman JR et al (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34. doi:10.1016/S0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

  12. Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 389:365–375. doi:10.1016/j.jmb.2009.04.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lou J, Geren I, Garcia-Rodriguez C et al (2010) Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23:311–319. doi:10.1093/protein/gzq001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wozniak-Knopp G, Bartl S, Bauer A et al (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23:289–297. doi:10.1093/protein/gzq005

    Article  CAS  PubMed  Google Scholar 

  15. Traxlmayr MW, Wozniak-Knopp G, Antes B et al (2011) Integrin binding human antibody constant domains: probing the C-terminal structural loops for grafting the RGD motif. J Biotechnol 155:193–202. doi:10.1016/j.jbiotec.2011.06.042

    Article  CAS  PubMed  Google Scholar 

  16. Traxlmayr MW, Hasenhindl C, Hackl M et al (2012) Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing. J Mol Biol 423:397–412. doi:10.1016/j.jmb.2012.07.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rakestraw JA, Aird D, Aha PM et al (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24:525–530. doi:10.1093/protein/gzr008

    Article  CAS  PubMed  Google Scholar 

  18. Tereshko V, Uysal S, Koide A et al (2008) Toward chaperone-assisted crystallography: protein engineering enhancement of crystal packing and X-ray phasing capabilities of a camelid single-domain antibody (VHH) scaffold. Protein Eng Des Sel 17:1175–1187. doi:10.1110/ps.034892.108

    Article  CAS  Google Scholar 

  19. Dong J, Thompson AA, Fan Y et al (2010) A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. J Mol Biol 397:1106–1118. doi:10.1016/j.jmb.2010.01.070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ryckaert S, Pardon E, Steyaert J et al (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 145:93–98. doi:10.1016/j.jbiotec.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  21. Kieke MC, Shusta EV, Boder ET et al (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci U S A 96:5651–5656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shusta EV, Kieke MC, Parke E et al (1999) Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 292:949–956. doi:10.1006/jmbi.1999.3130

    Article  CAS  PubMed  Google Scholar 

  23. Kimura RH, Levin AM, Cochran FV et al (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77:359–369. doi:10.1002/prot.22441

    Article  CAS  PubMed  Google Scholar 

  24. Silverman AP, Levin AM, Lahti JL et al (2009) Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 385:1064–1075. doi:10.1016/j.jmb.2008.11.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Silverman AP, Kariolis MS, Cochran JR (2011) Cystine-knot peptides engineered with specificities for alpha(IIb)beta(3) or alpha(IIb)beta(3) and alpha(v)beta(3) integrins are potent inhibitors of platelet aggregation. J Mol Recognit 24:127–135. doi:10.1002/jmr.1036

    Article  CAS  PubMed  Google Scholar 

  26. Kimura RH, Jones DS, Jiang L et al (2011) Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 6:e16112. doi:10.1371/journal.pone.0016112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Methods Enzymol 503:223–251. doi:10.1016/B978-0-12-396962-0.00009-4

    CAS  PubMed  Google Scholar 

  28. Chen TF, de Picciotto S, Hackel BJ et al (2013) Engineering fibronectin-based binding proteins by yeast surface display. Methods Enzymol 523:303–326. doi:10.1016/B978-0-12-394292-0.00014-X

    CAS  PubMed  Google Scholar 

  29. Lipovsek D, Lippow SM, Hackel BJ et al (2007) Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 368:1024–1041. doi:10.1016/j.jmb.2007.02.029

    Article  CAS  PubMed  Google Scholar 

  30. Hackel BJ, Kapila A, Wittrup KD (2008) Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol 381:1238–1252. doi:10.1016/j.jmb.2008.06.051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Koide S, Koide A, Lipovsek D (2012) Target-binding proteins based on the 10th human fibronectin type III domain ((1)(0)Fn3). Methods Enzymol 503:135–156. doi:10.1016/B978-0-12-396962-0.00006-9

    CAS  PubMed  Google Scholar 

  32. Tasumi S, Velikovsky CA, Xu G et al (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106:12891–12896. doi:10.1073/pnas.0904443106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Xu G, Tasumi S, Pancer Z (2011) Yeast surface display of lamprey variable lymphocyte receptors. Methods Mol Biol 748:21–33. doi:10.1007/978-1-61779-139-0_2

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Gera N, Hussain M, Wright RC et al (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409:601–616. doi:10.1016/j.jmb.2011.04.020

    Article  CAS  PubMed  Google Scholar 

  35. Gera N, Hill AB, White DP et al (2012) Design of pH sensitive binding proteins from the hyperthermophilic Sso7d scaffold. PLoS One 7:e48928. doi:10.1371/journal.pone.0048928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schmidt MM, Townson SA, Andreucci AJ et al (2013) Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure 21:1966–1978. doi:10.1016/j.str.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  37. Huang D, Shusta EV (2005) Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae. Biotechnol Prog 21:349–357. doi:10.1021/bp0497482

    Article  CAS  PubMed  Google Scholar 

  38. Pavoor TV, Cho YK, Shusta EV (2009) Development of GFP-based biosensors possessing the binding properties of antibodies. Proc Natl Acad Sci U S A 106:11895–11900. doi:10.1073/pnas.0902828106

    Article  PubMed Central  PubMed  Google Scholar 

  39. Jiang W, Boder ET (2010) High-throughput engineering and analysis of peptide binding to class II MHC. Proc Natl Acad Sci U S A 107:13258–13263. doi:10.1073/pnas.1006344107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Wen F, Sethi DK, Wucherpfennig KW et al (2011) Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display. Protein Eng Des Sel 24:701–709. doi:10.1093/protein/gzr035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rao BM, Driver I, Lauffenburger DA et al (2004) Interleukin 2 (IL-2) variants engineered for increased IL-2 receptor alpha-subunit affinity exhibit increased potency arising from a cell surface ligand reservoir effect. Mol Pharmacol 66:864–869. doi:10.1124/mol.66.4

    CAS  PubMed  Google Scholar 

  42. Levin AM, Bates DL, Ring AM et al (2012) Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484:529–533. doi:10.1038/nature10975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rao BM, Driver I, Lauffenburger DA et al (2005) High-affinity CD25-binding IL-2 mutants potently stimulate persistent T cell growth. Biochemistry 44:10696–10701. doi:10.1021/bi050436x

    Article  CAS  PubMed  Google Scholar 

  44. Junttila IS, Creusot RJ, Moraga I et al (2012) Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat Chem Biol 8:990–998. doi:10.1038/nchembio.1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cochran JR, Kim YS, Lippow SM et al (2006) Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 19:245–253. doi:10.1093/protein/gzl006

    Article  CAS  PubMed  Google Scholar 

  46. Lahti JL, Lui BH, Beck SE et al (2011) Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation. FEBS Lett 585:1135–1139. doi:10.1016/j.febslet.2011.03.044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Papo N, Silverman AP, Lahti JL et al (2011) Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and alphavbeta3 integrin. Proc Natl Acad Sci U S A 108:14067–14072. doi:10.1073/pnas.1016635108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jones DS 2nd, Tsai PC, Cochran JR (2011) Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists. Proc Natl Acad Sci U S A 108:13035–13040. doi:10.1073/pnas.1102561108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Lee CH, Park KJ, Sung ES et al (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci U S A 107:9567–9571. doi:10.1073/pnas.1001541107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Shpilman M, Niv-Spector L, Katz M et al (2011) Development and characterization of high affinity leptins and leptin antagonists. J Biol Chem 286:4429–4442. doi:10.1074/jbc.M110.196402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Garcia-Rodriguez C, Levy R, Arndt JW et al (2007) Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 25:107–116. doi:10.1038/nbt1269

    Article  CAS  PubMed  Google Scholar 

  52. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ et al (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel 18:527–536. doi:10.1093/protein/gzi060

    Article  CAS  PubMed  Google Scholar 

  53. Hu X, Kang S, Lefort C et al (2010) Combinatorial libraries against libraries for selecting neoepitope activation-specific antibodies. Proc Natl Acad Sci U S A 107:6252–6257. doi:10.1073/pnas.0914358107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Shusta EV, Holler PD, Kieke MC et al (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18:754–759. doi:10.1038/77325

    Article  CAS  PubMed  Google Scholar 

  55. Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174–180. doi:10.1016/j.abb.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  56. Traxlmayr MW, Faissner M, Stadlmayr G et al (2012) Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochim Biophys Acta 1824:542–549. doi:10.1016/j.bbapap.2012.01.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lipovsek D, Antipov E, Armstrong KA et al (2007) Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol 14:1176–1185. doi:10.1016/j.chembiol.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  58. Parthasarathy R, Bajaj J, Boder ET (2005) An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae. Biotechnol Prog 21:1627–1631. doi:10.1021/bp050279t

    Article  CAS  PubMed  Google Scholar 

  59. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404. doi:10.1073/pnas.1101046108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Shiraga S, Ishiguro M, Fukami H et al (2005) Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 68:779–785. doi:10.1007/s00253-005-1935-0

    Article  CAS  PubMed  Google Scholar 

  61. Shiraga S, Kawakami M, Ishiguro M et al (2005) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol 71:4335–4338. doi:10.1128/AEM. 71.8.4335-4338.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Han SY, Zhang JH, Han ZL et al (2011) Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnol Lett 33:2431–2438. doi:10.1007/s10529-011-0705-6

    Article  CAS  PubMed  Google Scholar 

  63. Chao G, Cochran JR, Wittrup KD (2004) Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 342:539–550. doi:10.1016/j.jmb.2004.07.053

    Article  CAS  PubMed  Google Scholar 

  64. Cochran JR, Kim YS, Olsen MJ et al (2004) Domain-level antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J Immunol Methods 287:147–158. doi:10.1016/j.jim.2004.01.024

    Article  CAS  PubMed  Google Scholar 

  65. Chung KM, Nybakken GE, Thompson BS et al (2006) Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J Virol 80:1340–1351. doi:10.1128/JVI. 80.3.1340-1351.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Levy R, Forsyth CM, LaPorte SL et al (2007) Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 365:196–210. doi:10.1016/j.jmb.2006.09.084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Garcia-Rodriguez C, Zhou Y, Marks JD (2010) Antibody epitope mapping using yeast display. In: Kontermann RE, Stefan D (eds) Antibody engineering, vol 1. Springer-Verlag, Berlin, pp 591–605. doi:10.1007/978-3-642-01144-3_37

    Google Scholar 

  68. Mata-Fink J, Kriegsman B, Yu HX et al (2013) Rapid conformational epitope mapping of anti-gp120 antibodies with a designed mutant panel displayed on yeast. J Mol Biol 425:444–456. doi:10.1016/j.jmb.2012.11.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  70. Daugherty PS (2007) Protein engineering with bacterial display. Curr Opin Struct Biol 17:474–480. doi:10.1016/j.sbi.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  71. Ho M, Nagata S, Pastan I (2006) Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A 103:9637–9642. doi:10.1073/pnas.0603653103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Beerli RR, Bauer M, Buser RB et al (2008) Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 105:14336–14341. doi:10.1073/pnas.0805942105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290:51–67. doi:10.1016/j.jim.2004.04.008

    Article  CAS  PubMed  Google Scholar 

  74. Van der Vaart JM, te Biesebeke R, Chapman JW et al (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620

    PubMed Central  PubMed  Google Scholar 

  75. Kondo A, Ueda M (2004) Yeast cell-surface display: applications of molecular display. Appl Microbiol Biotechnol 64:28–40. doi:10.1007/s00253-003-1492-3

    Article  CAS  PubMed  Google Scholar 

  76. Pepper LR, Cho YK, Boder ET et al (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Rakestraw JA, Baskaran AR, Wittrup KD (2006) A flow cytometric assay for screening improved heterologous protein secretion in yeast. Biotechnol Prog 22:1200–1208. doi:10.1021/bp0600233

    Article  CAS  PubMed  Google Scholar 

  78. Sazinsky SL, Ott RG, Silver NW et al (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105:20167–20172. doi:10.1073/pnas.0809257105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Dutta S, Koide A, Koide S (2008) High-throughput analysis of the protein sequence-stability landscape using a quantitative yeast surface two-hybrid system and fragment reconstitution. J Mol Biol 382:721–733. doi:10.1016/j.jmb.2008.07.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Hu X, Kang S, Chen X et al (2009) Yeast surface two-hybrid for quantitative in vivo detection of protein-protein interactions via the secretory pathway. J Biol Chem 284:16369–16376. doi:10.1074/jbc.M109.001743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lim KH, Madabhushi SR, Mann J et al (2010) Disulfide trapping of protein complexes on the yeast surface. Biotechnol Bioeng 106:27–41. doi:10.1002/bit.22651

    CAS  PubMed  Google Scholar 

  82. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16:31–37. doi:10.1021/bp990133s

    Article  CAS  PubMed  Google Scholar 

  83. Orcutt KD, Wittrup KD (2010) Yeast display and selections. In: Kontermann RE, Stefan D (eds) Antibody engineering, vol 1. Springer-Verlag, Berlin, pp 207–233. doi:10.1007/978-3-642-01144-3_37

    Google Scholar 

  84. Orr BA, Carr LM, Wittrup KD et al (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19:631–638. doi:10.1021/bp0200797

    Article  CAS  PubMed  Google Scholar 

  85. Bowley DR, Labrijn AF, Zwick MB et al (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90. doi:10.1093/protein/gzl057

    Article  CAS  PubMed  Google Scholar 

  86. Patel CA, Wang J, Wang X et al (2011) Parallel selection of antibody libraries on phage and yeast surfaces via a cross-species display. Protein Eng Des Sel 24:711–719. doi:10.1093/protein/gzr034

    Article  CAS  PubMed  Google Scholar 

  87. Bowley DR, Jones TM, Burton DR et al (2009) Libraries against libraries for combinatorial selection of replicating antigen-antibody pairs. Proc Natl Acad Sci U S A 106:1380–1385. doi:10.1073/pnas.0812291106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128. doi:10.1038/nrmicro1087

    Article  CAS  PubMed  Google Scholar 

  89. Colby DW, Kellogg BA, Graff CP et al (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol 388:348–358. doi:10.1016/S0076-6879(04)88027-3

    CAS  PubMed  Google Scholar 

  90. Chao G, Lau WL, Hackel BJ et al (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. doi:10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  91. Van Deventer JA, Wittrup KD. In preparation

    Google Scholar 

  92. Van Deventer JA, Wittrup KD (2014) Yeast surface display for antibody isolation: library construction, library screening and affinity maturation. Methods Mol Biol 1131:151–181. doi:10.1007/978-1-62703-992-5_10

  93. Ackerman M, Levary D, Tobon G et al (2009) Highly avid magnetic bead capture: an efficient selection method for de novo protein engineering utilizing yeast surface display. Biotechnol Prog 25:774–783. doi:10.1002/btpr.174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Zaccolo M, Williams DM, Brown DM et al (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 255:589–603. doi:10.1006/jmbi.1996.0049

    Article  CAS  PubMed  Google Scholar 

  95. Zaccolo M, Gherardi E (1999) The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 beta-lactamase. J Mol Biol 285:775–783. doi:10.1006/jmbi.1998.2262

    Article  CAS  PubMed  Google Scholar 

  96. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391. doi:10.1038/370389a0

    Article  CAS  PubMed  Google Scholar 

  98. Swers JS, Kellogg BA, Wittrup KD (2004) Shuffled antibody libraries created by in vivo homologous recombination and yeast surface display. Nucleic Acids Res 32:e36. doi:10.1093/nar/gnh030

    Article  PubMed Central  PubMed  Google Scholar 

  99. Boder ET, Wittrup KD (1998) Optimal screening of surface-displayed polypeptide libraries. Biotechnol Prog 14:55–62. doi:10.1021/bp970144q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all members of the Wittrup group for helpful discussions and critical reading of this chapter. Furthermore, we thank the Koch Institute Swanson Biotechnology Center for technical support, specifically the Flow Cytometry and Biopolymers Core Facilities for FACS experiments and DNA sequencing, respectively. The financial contributions from the Swiss National Science Foundation (SNSF Fellowship for Advanced Researchers PA00P3 139659 to A.A.), the NIGMS/MIT Biotechnology Training Program (T.F.C. and N.J.Y.), the ICBP (1 U54 CA112967 to S.D.P.), and the Austrian Science Fund (Schrödinger Fellowship J3496-N28 to M.W.T) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dane Wittrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Angelini, A. et al. (2015). Protein Engineering and Selection Using Yeast Surface Display. In: Liu, B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2748-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2748-7_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2747-0

  • Online ISBN: 978-1-4939-2748-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics