Skip to main content

Evaluation of Bystander Cell Killing Effects in Suicide Gene Therapy of Cancer: Engineered Thymidylate Kinase (TMPK)/AZT Enzyme-Prodrug Axis

  • Protocol
Gene Therapy of Solid Cancers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1317))

Abstract

Suicide gene therapy of cancer (SGTC) entails the introduction of a cDNA sequence into tumor cells whose polypeptide product is capable of either directly activating apoptotic pathways itself or facilitating the activation of pharmacologic agents that do so. The latter class of SGTC approaches is of the greater utility in cancer therapy owing to the ability of some small, activated cytotoxic compounds to diffuse from their site of activation into neighboring malignant cells, where they can also mediate destruction. This phenomenon, termed “bystander killing”, can be highly advantageous in driving significant tumor regression in vivo without the requirement of transduction of each and every tumor cell with the suicide gene. We have developed a robust suicide gene therapy enzyme/prodrug system based on an engineered variant of the human thymidylate kinase (TMPK), which has been endowed with the ability to drive azidothymidine (AZT) activation. Delivery of this suicide gene sequence into tumors by means of recombinant lentivirus-mediated transduction embodies an SGTC strategy that successfully employs bystander cell killing as a mechanism to achieve significant ablation of solid tumors in vivo. Thus, this engineered TMPK/AZT suicide gene therapy axis holds great promise for clinical application in the treatment of inoperable solid tumors in the neoadjuvant setting. Here we present detailed procedures for the preparation of recombinant TMPK-based lentivirus, transduction of target cells, and various approaches for the evaluation of bystander cell killing effects in SGCT in both in vitro and in vivo models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, Zanusso M, Palu G (2005) Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 12(10):835–848. doi:10.1038/sj.cgt.7700851

    Article  CAS  PubMed  Google Scholar 

  2. Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV (2009) Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 14(11):4517–4545. doi:10.3390/molecules14114517 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA (2002) Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther 2(3):307–322. doi:10.2174/1566523023347733

    Article  PubMed  Google Scholar 

  4. Beck C, Cayeux S, Lupton SD, Dorken B, Blankenstein T (1995) The thymidine kinase/ganciclovir-mediated “suicide” effect is variable in different tumor cells. Hum Gene Ther 6(12):1525–1530. doi:10.1089/hum. 1995.6.12-1525

    Article  CAS  PubMed  Google Scholar 

  5. Satoh T, Irie A, Egawa S, Baba S (2005) In situ gene therapy for prostate cancer. Curr Gene Ther 5(1):111–119. doi:10.2174/1566523052997523

    Article  CAS  PubMed  Google Scholar 

  6. Andrade-Rozental AF, Rozental R, Hopperstad MG, Wu JK, Vrionis FD, Spray DC (2000) Gap junctions: the “kiss of death” and the “kiss of life”. Brain Res Brain Res Rev 32(1):308–315, S0165017399000995 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Mesnil M, Yamasaki H (2000) Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 60(15):3989–3999

    CAS  PubMed  Google Scholar 

  8. Ardiani A, Sanchez-Bonilla M, Black ME (2010) Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo. Cancer Gene Ther 17(2):86–96. doi:10.1038/cgt.2009.60cgt200960 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wei SJ, Chao Y, Hung YM, Lin WC, Yang DM, Shih YL, Ch’ang LY, Whang-Peng J, Yang WK (1998) S- and G2-phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells transduced with herpes simplex virus thymidine kinase. Exp Cell Res 241(1):66–75. doi:10.1006/excr.1998.4005, S0014-4827(98)94005-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Denny WA (2003) Prodrugs for gene-directed enzyme-prodrug therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003(1):48–70. doi:10.1155/S1110724303209098, S1110724303209098 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA (2007) Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 15(5):962–970. doi:10.1038/Mt.Sj.6300122

    Article  CAS  PubMed  Google Scholar 

  12. Neschadim A, Wang JC, Sato T, Fowler DH, Lavie A, Medin JA (2012) Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase. Mol Ther 20(5):1002–1013. doi:10.1038/mt.2011.298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Neschadim A, Wang JC, Lavie A, Medin JA (2012) Bystander killing of malignant cells via the delivery of engineered thymidine-active deoxycytidine kinase for suicide gene therapy of cancer. Cancer Gene Ther 19(5):320–327. doi:10.1038/cgt.2012.4cgt20124 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Sato T, Neschadim A, Lavie A, Yanagisawa T, Medin JA (2013) The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One 8(10):e78711. doi:10.1371/journal.pone.0078711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Brundiers R, Lavie A, Veit T, Reinstein J, Schlichting I, Ostermann N, Goody RS, Konrad M (1999) Modifying human thymidylate kinase to potentiate azidothymidine activation. J Biol Chem 274(50):35289–35292. doi:10.1074/jbc.274.50.35289

    Article  CAS  PubMed  Google Scholar 

  16. Berger C, Flowers ME, Warren EH, Riddell SR (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107(6):2294–2302. doi:10.1182/blood-2005-08-3503, 2005-08-3503 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Scaife M, Pacienza N, Au BC, Wang JC, Devine S, Scheid E, Lee CJ, Lopez-Perez O, Neschadim A, Fowler DH, Foley R, Medin JA (2013) Engineered human Tmpk fused with truncated cell-surface markers: versatile cell-fate control safety cassettes. Gene Ther 20(1):24–34. doi:10.1038/gt.2011.210

    Article  CAS  PubMed  Google Scholar 

  18. Walia JS, Neschadim A, Lopez-Perez O, Alayoubi A, Fan X, Carpentier S, Madden M, Lee CJ, Cheung F, Jaffray DA, Levade T, McCart JA, Medin JA (2011) Autologous transplantation of lentivector/acid ceramidase-transduced hematopoietic cells in nonhuman primates. Hum Gene Ther 22(6):679–687. doi:10.1089/hum.2010.195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

T.S. was funded in part by a Grant-in-Aid for Scientific Research (C) (20590533) from the Japan Society for the Promotion of Science (JSPS) and by a research grant from the Saito Gratitude Foundation. A.N. was funded by the Canadian Institutes of Health Research (CIHR) Training Program in Regenerative Medicine. The authors would like to thank Dr. Manfred Konrad (Max Planck Institute for Biophysical Chemistry, Göttingen, Germany) for generously providing the anti-TMPK antibody for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Medin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sato, T., Neschadim, A., Nakagawa, R., Yanagisawa, T., Medin, J.A. (2015). Evaluation of Bystander Cell Killing Effects in Suicide Gene Therapy of Cancer: Engineered Thymidylate Kinase (TMPK)/AZT Enzyme-Prodrug Axis. In: Walther, W., Stein, U. (eds) Gene Therapy of Solid Cancers. Methods in Molecular Biology, vol 1317. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2727-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2727-2_4

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2726-5

  • Online ISBN: 978-1-4939-2727-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics