Skip to main content

MIDGE Technology for the Production of a Fourfold Gene-Modified, Allogenic Cell-Based Vaccine for Cancer Therapy

  • Protocol
Gene Therapy of Solid Cancers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1317))

Abstract

Gene modification of eukaryotic cells by electroporation is a widely used method to express selected genes in a defined cell population for various purposes, like gene correction or production of therapeutics. Here, we describe the generation of a cell-based tumor vaccine via fourfold transient gene modification of a human renal cell carcinoma (RCC) cell line for high expression of CD80, CD154, GM-CSF, and IL-7 by use of MIDGE® vectors. The two co-stimulatory molecules CD80 and CD154 are expressed at the cell surface, whereas the two cytokines GM-CSF and IL-7 are secreted yielding cells with enhanced immunological properties. These fourfold gene-modified cells have been used as a cell-based tumor vaccine for the treatment of RCC.

MIDGE® and dSLIM® are registered trademarks of MOLOGEN AG, Berlin, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schakowski F et al (2001) A novel minimal-size vector (MIDGE) improves transgene expression in colon carcinoma cells and avoids transfection of undesired DNA. Mol Ther 3:793–800

    Article  CAS  PubMed  Google Scholar 

  2. Moreno S et al (2004) DNA immunisation with minimalistic expression constructs. Vaccine 22:1709–1716

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt M, Volz B, Wittig B (2005) MIDGE Vectors and dSLIM Immunomodulators: DNA-based Molecules for Gene Therapeutic Strategies. In: Knäblein J, Müller RH (eds) Modern Biopharmaceutical. WILEY-VCH Verlag, Weinheim, pp 1–29

    Google Scholar 

  4. Schakowski F et al (2007) Minimal size MIDGE vectors improve transgene expression in vivo. In Vivo 21:17–23

    CAS  PubMed  Google Scholar 

  5. Endmann A et al (2010) Immune response induced by a linear DNA vector: influence of dose, formulation and route of injection. Vaccine 28:3642–369

    Article  CAS  PubMed  Google Scholar 

  6. Kobelt D (2014) Preclinical study on combined chemo- and nonviral gene therapy for sensitization of melanoma using a human TNF-alpha expressing MIDGE DNA vector. Mol Oncol 8:609–619

    Article  CAS  PubMed  Google Scholar 

  7. Keenan BP, Jaffee EM (2012) Whole cell vaccines–past progress and future strategies. Semin Oncol 39:276–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Schendel DJ et al (2000) Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Ther 7:2007–2014

    Article  CAS  PubMed  Google Scholar 

  9. Johnson BD et al (2005) Neuroblastoma cells transiently transfected to simultaneously express the co-stimulatory molecules CD54, CD80, CD86, and CD137L generate antitumor immunity in mice. J Immunother 28:449–460

    Article  CAS  PubMed  Google Scholar 

  10. Dzojic H et al (2006) Adenovirus-mediated CD40 ligand therapy induces tumor cell apoptosis and systemic immunity in the TRAMP-C2 mouse prostate cancer model. Prostate 66:831–838

    Article  CAS  PubMed  Google Scholar 

  11. Loskog A, Totterman TH (2007) CD40L - a multipotent molecule for tumor therapy. Endocr Metab Immune Disord Drug Targets 7:23–28

    Article  CAS  PubMed  Google Scholar 

  12. Ruybal P et al (2008) Complete rejection of a T-cell lymphoma due to synergism of T-cell receptor costimulatory molecules, CD80, CD40L, and CD40. Vaccine 26:697–705

    Article  CAS  PubMed  Google Scholar 

  13. Zhan Y et al (2011) GM-CSF increases cross-presentation and CD103 expression by mouse CD8(+) spleen dendritic cells. Eur J Immunol 41:2585–2595

    Article  CAS  PubMed  Google Scholar 

  14. Morre M, Beq S (2012) Interleukin-7 and immune reconstitution in cancer patients: a new paradigm for dramatically increasing overall survival. Target Oncol 7:55–68

    Article  PubMed Central  PubMed  Google Scholar 

  15. Schmidt M et al (2006) Cytokine and Ig-production by CG-containing sequences with phosphorodiester backbone and dumbbell-shape. Allergy 61:56–63

    Article  CAS  PubMed  Google Scholar 

  16. Kapp K et al (2014) Genuine immunomodulation with dslim. Mol Ther Nucleic Acids 3:e170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Schmidt M et al (2015) Design and structural requirements of the potent and safe TLR-9agonistic immunomodulator MGN1703. Nucleic Acid Ther (in press)

    Google Scholar 

  18. Schmoll HJ et al (2014) Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: a randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol, Epub ahead of print

    Google Scholar 

  19. Wittig B et al (2015) MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: From bench to bedside. Crit Rev Oncol Hematol 94:31–44

    Google Scholar 

  20. Grünwald V et al (2014) Final results of patients with metastatic renal cell carcinoma treated with MGN1601 in the ASET study. J Clin Oncol 32(15 suppl), e15590

    Google Scholar 

Download references

Acknowledgements

We thank Florian Sack for expert review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Schmidt or Burghardt Wittig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, M., Volz, B., Großmann, P., Heinrich, K., Wittig, B. (2015). MIDGE Technology for the Production of a Fourfold Gene-Modified, Allogenic Cell-Based Vaccine for Cancer Therapy. In: Walther, W., Stein, U. (eds) Gene Therapy of Solid Cancers. Methods in Molecular Biology, vol 1317. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2727-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2727-2_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2726-5

  • Online ISBN: 978-1-4939-2727-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics