Skip to main content

Label-Free Cell-Based Biosensor Methods in Drug Toxicology Analysis

  • Protocol
  • First Online:
Label-Free Biosensor Methods in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1273 Accesses

Abstract

Cell-based biosensors are one kind of devices that employ immobilized living cells as sensing elements combined with sensors or transducers to detect the intracellular and extracellular microenvironment conditions, physiological parameters and responses of cells upon stimulation. Because of their advantages associated with long-term recording in a noninvasive way, fast response time, and label-free experimentation, these biosensors have been widely utilized in many fields such as cellular physiological analysis, pharmaceutical evaluation, environmental monitoring, and medical diagnosis. Drug toxicology analysis is a vital step in drug discovery and development. This chapter discusses the principles and applications of cell-based biosensors including microelectrode arrays, electrical cell–substrate impedance sensing, field effect transistors, light-addressable potentiometric sensors, patch-clamp chips, quartz crystal microbalance in drug toxicology analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas C Jr, Springer P, Loeb G et al (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66

    PubMed  Google Scholar 

  2. Metz S, Bartlett R, Jenkins J, et al (1996) Controller design for extracorporeal life support. in Engineering in Medicine and Biology Society, 1996. Bridging disciplines for biomedicine. Proceedings of the 18th annual international conference of the IEEE. IEEE

    Google Scholar 

  3. Egert U (2006) Network on chips. In: BioMEMS. Springer. pp. 309–349

    Google Scholar 

  4. Borkholder DA (1998) Cell-based biosensors using microelectrodes. Ph.D. thesis, Standford University, CA.

    Google Scholar 

  5. Halbach MD, Egert U, Hescheler J et al (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13(5):271–284

    CAS  PubMed  Google Scholar 

  6. Reppel M (2007) Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem 19(5/6):12

    Google Scholar 

  7. Gilchrist KH (2003) Characterization and validation of cell-based biosensors. Ph.D. thesis, Stanford University, CA.

    Google Scholar 

  8. Natarajan A, Molnar P, Sieverdes K et al (2006) Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity. Toxicol in Vitro 20(3):375–381

    CAS  PubMed  Google Scholar 

  9. Tsai CT, Chiang FT, Chen WP et al (2011) Angiotensin II induces complex fractionated electrogram in a cultured atrial myocyte monolayer mediated by calcium and sodium-calcium exchanger. Cell Calcium 49(1):1–11

    CAS  PubMed  Google Scholar 

  10. Yeung C, Sommerhage F, Wrobel G et al (2007) Drug profiling using planar microelectrode arrays. Anal Bioanal Chem 387(8):2673–2680

    CAS  PubMed  Google Scholar 

  11. Braam SR, Tertoolen L, van de Stolpe A et al (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4(2):107–116

    CAS  PubMed  Google Scholar 

  12. Gross G, Kowalski JM (1991) Experimental and theoretical analysis of random nerve cell networks dynamics. In: Antognetti P, Miltunovic E (eds) Neural networks: concepts, applications and implementations. Prentice Hall, New Jersey, pp 47–110

    Google Scholar 

  13. Kamioka H, Maeda E, Jimbo Y et al (1996) Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures. Neurosci Lett 206(2–3):109–112

    CAS  PubMed  Google Scholar 

  14. Gross GW, Harsch A, Rhoades BK et al (1997) Odor, drug and toxin analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron 12(5):373–393

    CAS  PubMed  Google Scholar 

  15. Eytan D, Minerbi A, Ziv N et al (2004) Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. J Neurophysiol 92(3):1817–1824

    CAS  PubMed  Google Scholar 

  16. Moss BL, Fuller AD, Sahley CL et al (2005) Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech. J Neurophysiol 94(4):2575–2589

    CAS  PubMed  Google Scholar 

  17. Otto F, Görtz P, Fleischer W et al (2003) Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays. J Neurosci Methods 128(1–2):173–181

    PubMed  Google Scholar 

  18. Sokal DM, Mason R, Parker TL (2000) Multi-neuronal recordings reveal a differential effect of thapsigargin on bicuculline- or gabazine-induced epileptiform excitability in rat hippocampal neuronal networks. Neuropharmacology 39(12):2408–2417

    CAS  PubMed  Google Scholar 

  19. Harsch A, Ziegler C, Göpel W (1997) Strychnine analysis with neuronal networks in vitro: extracellular array recording of network responses. Biosens Bioelectron 12(8):827–835

    CAS  PubMed  Google Scholar 

  20. Krause G, Lehmann S, Lehmann M et al (2006) Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays. Biosens Bioelectron 21(7):1272–1282

    CAS  PubMed  Google Scholar 

  21. Xia Y, Gopal KV, Gross GW (2003) Differential acute effects of fluoxetine on frontal and auditory cortex networks in vitro. Brain Res 973(2):151–160

    CAS  PubMed  Google Scholar 

  22. Mistry SK, Keefer EW, Cunningham BA et al (2002) Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. Proc Natl Acad Sci U S A 99(3):1621–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Rijal SO, Gross GW (2008) Dissociation constants for GABAA receptor antagonists determined with neuronal networks on microelectrode arrays. J Neurosci Methods 173(2):183–192

    CAS  PubMed  Google Scholar 

  24. Morefield SI, Keefer EW, Chapman KD et al (2000) Drug evaluations using neuronal networks cultured on microelectrode arrays. Biosens Bioelectron 15(7–8):383–396

    CAS  PubMed  Google Scholar 

  25. Xia Y, Gross GW (2003) Histiotypic electrophysiological responses of cultured neuronal networks to ethanol. Alcohol 30(3):167–174

    CAS  PubMed  Google Scholar 

  26. Dasari S, Yuan Y (2010) In vivo methylmercury exposure induced long-lasting epileptiform activity in layer II/III neurons in cortical slices from the rat. Toxicol Lett 193(2):138–143

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Parviz M, Gross GW (2007) Quantification of zinc toxicity using neuronal networks on microelectrode arrays. Neurotoxicology 28(3): 520–531

    CAS  PubMed  Google Scholar 

  28. Gopal KV, Gross GW (2004) Unique responses of auditory cortex networks in vitro to low concentrations of quinine. Hear Res 192(1–2):10–22

    CAS  PubMed  Google Scholar 

  29. O’Shaughnessy TJ, Zim B, Ma W et al (2003) Acute neuropharmacologic action of chloroquine on cortical neurons in vitro. Brain Res 959(2):280–286

    PubMed  Google Scholar 

  30. Hogberg HT, Sobanski T, Novellino A et al (2011) Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology 32(1):158–168

    CAS  PubMed  Google Scholar 

  31. Volmer R, Prat CMA, Le Masson G et al (2007) Borna disease virus infection impairs synaptic plasticity. J Virol 81(16):8833–8837

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Scarlatos A, Cadotte AJ, DeMarse TB, Welt BA (2008) Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J Food Sci 73(3):129–136

    Google Scholar 

  33. Manos P, Pancrazio JJ, Coulombe MG et al (1999) Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays. Neurosci Lett 271(3):179–182

    CAS  PubMed  Google Scholar 

  34. Guenther E, Herrmann T, Stett A (2006) The retinasensor: an in vitro tool to study drug effects on retinal signaling. In: Taketani M, Baudry M (eds) Advances in network electrophysiology. Springer, USA, pp 321–331

    Google Scholar 

  35. Liu Q, Ye W, Xiao L et al (2010) Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron 25(10):2212–2217

    CAS  PubMed  Google Scholar 

  36. Chen Q, Xiao L, Liu Q et al (2011) An olfactory bulb slice-based biosensor for multi-site extracellular recording of neural networks. Biosens Bioelectron 26(7):3313–3319

    CAS  PubMed  Google Scholar 

  37. Suyama K, Daikoku S, Funabashi T et al (2004) Effects of GABA and bicuculline on the electrical activity of rat olfactory placode neurons derived at e13.5 and cultured for 1 week on multi-electrode dishes. Endocr J 51(2):171–176

    CAS  PubMed  Google Scholar 

  38. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ecis) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259(1):158–166

    CAS  PubMed  Google Scholar 

  39. Giaever I, Keese CR (1986) Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. Biomed Eng IEEE T Biomed Eng 33(2):242–247

    CAS  Google Scholar 

  40. Mitra P, Keese CR, Giaever I (1991) Electric measurements can be used to monitor the attachment and spreading of cells in tissue culture. Biotechniques 11(4):504–510

    CAS  PubMed  Google Scholar 

  41. Xiao C, Lachance B, Sunahara G et al (2002) An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal Chem 74:1333–1339

    CAS  PubMed  Google Scholar 

  42. Mayer M, Brunner P, Merwa R et al (2005) Monitoring of lung edema using focused impedance spectroscopy: a feasibility study. Physiol Meas 26(3):185–192

    PubMed  Google Scholar 

  43. Lo CM, Keese CR, Giaever I (1995) Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J 69(6):2800–2807

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Cascales-Sanchez P, Fernandez-Cornejo V, Tomas-Gomez A et al (2007) Electrical impedance of the liver during experimental long-term liver preservation. Transplant Proc 39(7):2118–2119

    CAS  PubMed  Google Scholar 

  45. Parramon D, Erill I, Guimera A et al (2007) In vivo detection of liver steatosis in rats based on impedance spectroscopy. Physiol Meas 28(8):813–828

    PubMed  Google Scholar 

  46. Parsonnet V, Marak MJ, Panken E et al (2007) Detection of early renal transplant rejection by minimally-invasive monitoring of impedance variability. Biosens Bioelectron 22(11):2749–2753

    CAS  PubMed  Google Scholar 

  47. Antaki F, French MM, Moonka DK et al (2008) Bioelectrical impedance analysis for the evaluation of hepatic fibrosis in patients with chronic hepatitis C infection. Dig Dis Sci 53(7):1957–1960

    PubMed  Google Scholar 

  48. Spottorno J, Multigner M, Rivero G et al (2008) Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current. Phys Med Biol 53(6):1701–1713

    CAS  PubMed  Google Scholar 

  49. Bhati CS, Silva MA, Wigmore SJ et al (2009) Use of bioelectrical impedance analysis to assess liver steatosis. Transplant Proc 41(5):1677–1681

    CAS  PubMed  Google Scholar 

  50. Hessheimer AJ, Parramon D, Guimera A et al (2009) A rapid and reliable means of assessing hepatic steatosis in vivo via electrical bioimpedance. Transplantation 88(5):716–722

    PubMed  Google Scholar 

  51. Hwang S, Yu YD, Park GC et al (2010) Bioelectrical impedance analysis for evaluation of donor hepatic steatosis in living-donor liver transplantation. Transplant Proc 42(5):1492–1496

    CAS  PubMed  Google Scholar 

  52. Park JY, Lee YS, Chang BY et al (2010) Label-free impedimetric sensor for a ribonucleic acid oligomer specific to hepatitis C virus at a self-assembled monolayer-covered electrode. Anal Chem 82(19):8342–8348

    CAS  PubMed  Google Scholar 

  53. Tarulli AW, Chin AB, Partida RA et al (2006) Electrical impedance in bovine skeletal muscle as a model for the study of neuromuscular disease. Physiol Meas 27(12):1269–1279

    PubMed  Google Scholar 

  54. Yang M, Lim CC, Liao R et al (2007) A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy. Biosens Bioelectron 22(8):1688–1693

    CAS  PubMed  Google Scholar 

  55. Balasubramanian L, Yip K-P, Hsu T-H et al (2008) Impedance analysis of renal vascular smooth muscle cells. Am J Physiol Cell Physiol 295(4):954–965

    Google Scholar 

  56. Haas S, Jahnke HG, Glass M et al (2010) Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab Chip 10(21):2965–2971

    CAS  PubMed  Google Scholar 

  57. Kirstein SL, Atienza JM, Xi B et al (2006) Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev Technol 4(5):545–553

    CAS  PubMed  Google Scholar 

  58. Atienza JM, Zhu J, Wang X et al (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10(8):795–805

    CAS  PubMed  Google Scholar 

  59. Keese CR, Wegener J, Walker SR et al (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101(6):1554–1559

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Wang L, Zhu J, Deng C et al (2008) An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing. Lab Chip 8(6):872–878

    CAS  PubMed  Google Scholar 

  61. Ren J, Y-j X, Singh LS et al (2006) Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 66(6):3006–3014

    CAS  PubMed  Google Scholar 

  62. Noiri E, Hu Y, Bahou WF et al (1997) Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem 272(3):1747–1752

    CAS  PubMed  Google Scholar 

  63. Saxena NK, Sharma D, Ding X et al (2007) Concomitant activation of the jak/stat, pi3k/akt, and erk signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67(6):2497–2507

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Chen J, Ye L, Zhang L et al (2008) Placenta growth factor, PLGF, influences the motility of lung cancer cells, the role of Rho associated kinase, Rock1. J Cell Biochem 105(1):313–320

    CAS  PubMed  Google Scholar 

  65. Earley S, Plopper GE (2008) Phosphorylation of focal adhesion kinase promotes extravasation of breast cancer cells. Biochem Biophys Res Commun 366(2):476–482

    CAS  PubMed  Google Scholar 

  66. Saxena NK, Taliaferro-Smith L, Knight BB et al (2008) Bidirectional crosstalk between leptin and insulin-like growth factor-i signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res 68(23):9712–9722

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Sgambato A, De Paola B, Migaldi M et al (2007) Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J Cell Physiol 213(2):528–539

    CAS  PubMed  Google Scholar 

  68. Sun T, Swindle EJ, Collins JE et al (2010) On-chip epithelial barrier function assays using electrical impedance spectroscopy. Lab Chip 10:1611–1617

    CAS  PubMed  Google Scholar 

  69. Ko KSC, Lo CM, Ferrier J et al (1998) Cell-substrate impedance analysis of epithelial cell shape and micromotion upon challenge with bacterial proteins that perturb extracellular matrix and cytoskeleton. J Microbiol Methods 34(2):125–132

    CAS  Google Scholar 

  70. Wegener J, Hakvoort A, Galla HJ (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853(1):115–124

    CAS  PubMed  Google Scholar 

  71. Yin F, Watsky MA (2005) LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Invest Ophthalmol Vis Sci 46(6):1927–1933

    CAS  PubMed  Google Scholar 

  72. Tiruppathi C, Malik AB, Del Vecchio PJ et al (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A 89(17):7919–7923

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Chang YC, Stins MF, McCaffery MJ et al (2004) Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 72(9):4985

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Treeratanapiboon L, Psathaki K, Wegener J et al (2005) In vitro study of malaria parasite induced disruption of blood-brain barrier. Biochem Biophys Res Commun 335(3):810–818

    CAS  PubMed  Google Scholar 

  75. Weidenfeller C, Schrot S, Zozulya A et al (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053(1–2):162–174

    CAS  PubMed  Google Scholar 

  76. Hartmann C, Zozulya A, Wegener J et al (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313(7):1318–1325

    CAS  PubMed  Google Scholar 

  77. Moy AB, Van Engelenhoven J, Bodmer J et al (1996) Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J Clin Invest 97(4):1020–1027

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Usatyuk PV, Vepa S, Watkins T et al (2003) Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid Redox Signal 5(6):723–730

    CAS  PubMed  Google Scholar 

  79. Usatyuk PV, Parinandi NL, Natarajan V (2006) Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 281(46):35554–35566

    CAS  PubMed  Google Scholar 

  80. Shivanna M, Rajashekhar G, Srinivas SP (2010) Barrier dysfunction of the corneal endothelium in response to TNF-α: role of p38 MAP kinase. Invest Ophthalmol Vis Sci 51(3):1575–1582

    PubMed Central  PubMed  Google Scholar 

  81. Boyd JM, Huang L, Xie L et al (2008) A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals. Anal Chim Acta 615(1):80–87

    CAS  PubMed  Google Scholar 

  82. Xiao C, Luong JHT (2003) On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol Prog 19(3):1000–1005

    CAS  PubMed  Google Scholar 

  83. Wang H, Keese CR, Giaever I et al (1995) Prostaglandin E2 alters human orbital fibroblast shape through a mechanism involving the generation of cyclic adenosine monophosphate. J Clin Endocrinol Metab 80(12):3553–3558

    CAS  PubMed  Google Scholar 

  84. Litkouhi B, Kwong J, Lo CM et al (2007) Claudin-4 overexpression in epithelial ovarian cancer is associated with hypomethylation and is a potential target for modulation of tight junction barrier function using a C-terminal fragment of Clostridium perfringens enterotoxin. Neoplasia 9(4):304–314

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Ehret R, Baumann W, Brischwein M et al (1997) Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 12(1):29–41

    CAS  PubMed  Google Scholar 

  86. Ehret R, Baumann W, Brischwein M et al (2001) Multiparametric microsensor chips for screening applications. Fresenius J Anal Chem 369(1):30–35

    CAS  PubMed  Google Scholar 

  87. Ciambrone GJ, Liu VF, Lin DC et al (2004) Cellular dielectric spectroscopy: a powerful new approach to label-free cellular analysis. J Biomol Screen 9(6):467–480

    CAS  PubMed  Google Scholar 

  88. Verdonk E, Johnson K, McGuinness R et al (2006) Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev Technol 4(5):609–619

    CAS  PubMed  Google Scholar 

  89. Yeon JH, Park JK (2005) Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal Biochem 341(2):308–315

    CAS  PubMed  Google Scholar 

  90. Guo M, Chen J, Yun X et al (2006) Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim Biophys Acta 1760(3):432–439

    CAS  PubMed  Google Scholar 

  91. Glamann J, Hansen AJ (2006) Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical impedance measurements. Assay Drug Dev Technol 4(5):555–563

    CAS  PubMed  Google Scholar 

  92. Solly K, Wang X, Xu X et al (2004) Application of real-time cell electronic sensing (rt-ces) technology to cell-based assays. Assay Drug Dev Technol 2(4):363–372

    CAS  PubMed  Google Scholar 

  93. Zhu J, Wang X, Xu X et al (2006) Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods 309(1–2):25–33

    CAS  PubMed  Google Scholar 

  94. Xing JZ, Zhu L, Jackson JA et al (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18(2):154–161

    CAS  PubMed  Google Scholar 

  95. Xing JZ, Zhu L, Gabos S et al (2006) Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro 20(6):995–1004

    CAS  PubMed  Google Scholar 

  96. Zhou J, Wu C, Tu J et al (2013) Assessment of cadmium-induced hepatotoxicity and protective effects of zinc against it using an improved cell-based biosensor. Sens Actuators A-Phys 199:156–164

    CAS  Google Scholar 

  97. Zou L, Hu N, Zhou J et al (2014) A novel electrical cell-substrate impedance biosensor for rapid detection of marine toxins. Sensor Lett 12(6–7):1041–1045

    Google Scholar 

  98. Shaw LM (2005) Tumor cell invasion assays. In: Guan J-L (ed) Cell migration. Humana, Totowa, pp 97–105

    Google Scholar 

  99. Keese CR, Bhave K, Wegener J, Giaever I (2002) Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques 33(4):842–850

    CAS  PubMed  Google Scholar 

  100. Taliaferro-Smith L, Nagalingam A, Zhong D et al (2009) LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene 28(29):2621–2633

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Patani N, Douglas-Jones A, Mansel R et al (2010) Tumour suppressor function of MDA-7/IL-24 in human breast cancer. Cancer Cell Int 10(1):29–32

    PubMed Central  PubMed  Google Scholar 

  102. Hu N, Wang T, Wang Q et al (2014) High-performance beating pattern function of human induced pluripotent stem cell-derived cardiomyocyte-based biosensors for hERG inhibition recognition. Biosens Bioelectron 67:146–153

    PubMed  Google Scholar 

  103. Otto AM, Brischwein M, Niendorf A et al (2003) Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect Prev 27(4):291–296

    CAS  PubMed  Google Scholar 

  104. Brischwein M, Motrescu ER, Cabala E et al (2003) Functional cellular assays with multiparametric silicon sensor chips. Lab Chip 3(4):234–240

    CAS  PubMed  Google Scholar 

  105. Geisler T, Ressler J, Harz H et al (2006) Automated multiparametric platform for high-content and high-throughput Analytical screening on living cells. IEEE Trans Autom Sci Eng 3(2):169–176

    Google Scholar 

  106. Ceriotti L, Kob A, Drechsler S et al (2007) Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal Biochem 371(1):92–104

    CAS  PubMed  Google Scholar 

  107. Becker B, Lob V, Janzen N, et al (2008) Automated multi-parametric label free 24 channel real-time screening system. In: 14th Nordic-Baltic conference on biomedical engineering and medical physics. pp. 186–189

    Google Scholar 

  108. Hafeman DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–1185

    CAS  PubMed  Google Scholar 

  109. Hafner F (2000) Cytosensor((R)) microphysiometer: technology and recent applications. Biosens Bioelectron 15(3–4):149–158

    CAS  PubMed  Google Scholar 

  110. McConnell HM, Owicki JC, Parce JW et al (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    CAS  PubMed  Google Scholar 

  111. Owicki JC, Bousse LJ, Hafeman DG et al (1994) The light-addressable potentiometric sensor: principles and biological applications. Annu Rev Biophys Biomol Struct 23:87–114

    CAS  PubMed  Google Scholar 

  112. Adami M, Sartore M, Nicolini C (1995) PAB: a newly designed potentiometric alternating biosensor system. Biosens Bioelectron 10(1–2):155–167

    CAS  Google Scholar 

  113. Wagner T, Werner CF, K-i M et al (2012) Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging. Sens Actuators B 170(31):34–39

    CAS  Google Scholar 

  114. Miller DL, Olson JC, Parce JW et al (1993) Cholinergic stimulation of the Na+/K+ adenosine-triphosphatase as revealed by microphysiometry. Biophys J 64(3):813–823

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Wang P, Xu GX, Qin LF et al (2005) Cell-based biosensors and its application in biomedicine. Sens Actuators B-Chem 108(1–2):576–584

    CAS  Google Scholar 

  116. Xu G, Ye X, Qin L et al (2005) Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron 20(9):1757–1763

    CAS  PubMed  Google Scholar 

  117. Ismail ABM, Yoshinobu T, Iwasaki H et al (2003) Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosens Bioelectron 18(12):1509–1514

    CAS  PubMed  Google Scholar 

  118. Stein B, George M, Gaub HE et al (2004) Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sens Actuators B-Chem 98(2–3):299–304

    CAS  Google Scholar 

  119. Liu QJ, Cai H, Xu Y et al (2006) Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron 22(2):318–322

    CAS  PubMed  Google Scholar 

  120. Parak WJ, George M, Domke J et al (2000) Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes? IEEE Trans Biomed Eng 47(8):1106–1113

    CAS  PubMed  Google Scholar 

  121. Zhang W, Li Y, Liu Q et al (2008) A novel experimental research based on taste cell chips for taste transduction mechanism. Sens Actuators B 131(1):24–28

    CAS  Google Scholar 

  122. Rabinowitz JD, Rigler P, Carswell-Crumpton C et al (1997) Screening for novel drug effects with a microphysiometer: a potent effect of clofilium unrelated to potassium channel blockade. Life Sci 61(7):87–94

    Google Scholar 

  123. Fischer H, Seelig A, Beier N et al (1999) New drugs for the Na+/H+ exchanger. Influence of Na+ concentration and determination of inhibition constants with a microphysiometer. J Membr Biol 168(1):39–45

    CAS  PubMed  Google Scholar 

  124. Cao C, Mioduszewski R, Menking D et al (1997) Validation of the cytosensor for in vitro cytotoxicity studies. Toxicol In Vitro 11(3):285–293

    CAS  PubMed  Google Scholar 

  125. Yicong W, Ping W, Xuesong Y et al (2001) Drug evaluations using a novel microphysiometer based on cell-based biosensors. Sens Actuators B 80(3):215–221

    Google Scholar 

  126. Wu Y, Wang P, Ye X et al (2001) A novel microphysiometer based on MLAPS for drugs screening. Biosens Bioelectron 16(4):277–286

    CAS  Google Scholar 

  127. Yu H, Cai H, Zhang W et al (2009) A novel design of multifunctional integrated cell-based biosensors for simultaneously detecting cell acidification and extracellular potential. Biosens Bioelectron 24(5):1462–1468

    CAS  PubMed  Google Scholar 

  128. Liu Q, Cai H, Xu Y et al (2007) Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron 22(12):3224–3229

    CAS  PubMed  Google Scholar 

  129. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17(1):70–71

    CAS  PubMed  Google Scholar 

  130. Bergveld P, Wiersma J, Meertens H (1976) Extracellular potential recordings by means of a field-effect transistor without gate metal, called osfet. IEEE Trans Biomed Eng 23(2):136–144

    CAS  PubMed  Google Scholar 

  131. Fromherz P, Offenhausser A, Vetter T et al (1991) A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010):1290–1293

    CAS  PubMed  Google Scholar 

  132. Bergveld P (2003) Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sens Actuators B 88(1):1–20

    CAS  Google Scholar 

  133. Lee CS, Kim SK, Kim M (2009) Ion-sensitive field-effect transistor for biological sensing. Sensors 9(9):7111–7131

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Dzyadevych SV, Soldatkin AP, EI’skaya AV et al (2006) Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta 568(1–2):248–258

    CAS  PubMed  Google Scholar 

  135. Fromherz P (2003) Semiconductor chips with ion channels, nerve cells and brain. Physica E 16(1):24–34

    Google Scholar 

  136. Schoning MJ (2005) “Playing around” with field-effect sensors on the basis of EIS structures, LAPS and ISFETs. Sens Actuators B 5:126–138

    Google Scholar 

  137. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as ph sensors in liquids: state-of-the-art and outlook. Sensors 9:4955–4985

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Niu M-N, Ding X-F, Tong Q-Y (1996) Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs. Sens Actuators B 37:13–17

    CAS  Google Scholar 

  139. Ujihira Y, Okabe Y, Suggano T et al (1982) IEEE Trans Electron Dev 29:1936

    Google Scholar 

  140. Bousse L, Derooij NF, Bergveld P (1983) operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE T Electron Dev 30(10):1263–1270

    Google Scholar 

  141. Van Hal REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv Colloid Interface Sci 69(1–3):31–62

    Google Scholar 

  142. Raiteri R, Margesin B, Grattarola M (1998) An atomic force microscope estimation of the point of zero charge of silicon insulators. Sens Actuators B 46(2):126–132

    CAS  Google Scholar 

  143. Jobling DT, Smith JG, Wheal HV (1981) Active microelectrode array to record from the mammalian central nervous-system in vitro. Med Biol Eng Comput 19(5):553–560

    CAS  PubMed  Google Scholar 

  144. Ingebrandt S, Yeung C-K, Krause M et al (2001) Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron 16(7):565–570

    CAS  PubMed  Google Scholar 

  145. Benfenati V, Toffanin S, Bonetti S et al (2013) A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat Mater 12(7):672–680

    CAS  PubMed  Google Scholar 

  146. Baumann W, Lehmann M, Schwinde A et al (1999) Microelectronic sensor system for microphysiological application on living cells. Sens Actuators B 55(1):77–89

    CAS  Google Scholar 

  147. Otto AM, Brischwein M, Motrescu E et al (2004) Analysis of drug action on tumor cell metabolism using electronic sensor chips. Arch Pharm 337(12):682–686

    CAS  Google Scholar 

  148. Seeland S, Török M, Kettiger H et al (2013) A cell-based, multiparametric sensor approach characterises drug-induced cytotoxicity in human liver HepG2 cells. Toxicol in Vitro 27(3):1109–1120

    CAS  PubMed  Google Scholar 

  149. Chen PH, Zhang W, Zhou J et al (2009) Development of planar patch clamp technology and its application in the analysis of cellular electrophysiology. Proc Natl Acad Sci U S A 19(2):153–160

    Google Scholar 

  150. Lepple-Wienhues A, Ferlinz K, Seeger A et al (2003) Flip the tip: an automated, high quality, cost-effective patch clamp screen. Receptors Channel 9(1):13–17

    CAS  Google Scholar 

  151. Kiss L, Bennett PB, Uebele VN et al (2003) High throughput ion-channel pharmacology: Planar-array-based voltage clamp. Assay Drug Dev Techn 1(1):127–135

    CAS  Google Scholar 

  152. Dunlop J, Bowlby M, Peri R et al (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7(4):358–368

    CAS  PubMed  Google Scholar 

  153. Schroeder K, Neagle B, Trezise DJ et al (2003) IonWorks (TM) HT: a new high-throughput electrophysiology measurement platform. J Biomol Screen 8(1):50–64

    CAS  PubMed  Google Scholar 

  154. Lau AY, Hung PJ, Wu AR et al (2006) Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. Lab Chip 6(12):1510–1515

    CAS  PubMed  Google Scholar 

  155. Finkel A, Wittel A, Yang N et al (2006) Population patch clamp improves data consistency and success rates in the measurement of ionic currents. J Biomol Screen 11(5):488–496

    CAS  PubMed  Google Scholar 

  156. Tao HM, Ana DS, Guia A et al (2004) Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev Techn 2(5):497–506

    CAS  Google Scholar 

  157. Kutchinsky J, Friis S, Asmild M et al (2003) Characterization of potassium channel modulators with QPatch (TM) automated patch-clamp technology: system characteristics and performance. Assay Drug Dev Techn 1(5):685–693

    CAS  Google Scholar 

  158. Sauerbrey G (1959) Use of quartz vibrator for weighing thin films on a microbalance. Z Phys 155(2):206–210

    CAS  Google Scholar 

  159. Curie J, Curie P (1880) Piezoelectric and allied phenomena in Rochelle salt. Comput Rend Acad Sci Paris 91:294–297

    Google Scholar 

  160. Sauerbrey G (1959) Use of quartz crystal vibrator for weighting thin films on a microbalance. Z Phys 155:206–222

    CAS  Google Scholar 

  161. Nomura T, Okuhara M (1982) Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Anal Chim Acta 142:281–284

    CAS  Google Scholar 

  162. Keiji Kanazawa K, Gordon JG (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105

    Google Scholar 

  163. Muramatsu H, Tamiya E, Karube I (1988) Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal Chem 60(19):2142–2146

    CAS  Google Scholar 

  164. Marx KA, Zhou T, Montrone A et al (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361(1):77–92

    CAS  PubMed  Google Scholar 

  165. Braunhut SJ, McIntosh D, Vorotnikova E et al (2005) Detection of apoptosis and drug resistance of human breast cancer cells to taxane treatments using quartz crystal microbalance biosensor technology. Assay Drug Dev Techn 3(1):77–88

    CAS  Google Scholar 

  166. Wegener J, Seebach J, Janshoff A et al (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78(6):2821–2833

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Fohlerová Z, Skládal P, Turanek J (2007) Adhesion of eukaryotic cell lines on the gold surface modified with extracellular matrix proteins monitored by the piezoelectric sensor. Biosens Bioelectron 22(9–10):1896–1901

    PubMed  Google Scholar 

  168. Guo M, Chen J, Zhang Y et al (2008) Enhanced adhesion/spreading and proliferation of mammalian cells on electropolymerized porphyrin film for biosensing applications. Biosens Bioelectron 23(6):865–871

    CAS  PubMed  Google Scholar 

  169. Elsom J, Lethem MI, Rees GD et al (2008) Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell-microparticle interaction in real-time. Biosens Bioelectron 23(8):1259–1265

    CAS  PubMed  Google Scholar 

  170. Steinem C, Janshoff A, Wegener J (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12(8):787–808

    CAS  PubMed  Google Scholar 

  171. Lord MS, Modin C, Foss M et al (2006) Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27(26):4529–4537

    CAS  PubMed  Google Scholar 

  172. Cans AS, Höök F, Shupliakov O et al (2001) Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Anal Chem 73(24):5805–5811

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, J., Qiu, X., Wang, P. (2015). Label-Free Cell-Based Biosensor Methods in Drug Toxicology Analysis. In: Fang, Y. (eds) Label-Free Biosensor Methods in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2617-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2617-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2616-9

  • Online ISBN: 978-1-4939-2617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics