Skip to main content

Computational Cardiac Electrophysiology: Implementing Mathematical Models of Cardiomyocytes to Simulate Action Potentials of the Heart

  • Protocol
Cardiomyocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1299))

Abstract

Mathematical models are now an important tool for studying cardiac electrophysiology and arrhythmias. Utilizing these models to quantify behavior and make predictions requires solving the models computationally using numerical schemes. We discuss different solution methods and other computational considerations for simulating cardiac action potentials in single cells and multicellular preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane currents and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 160:317–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268:177–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. DiFrancesco D, Noble D (1985) A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci 307:353–398

    Article  CAS  PubMed  Google Scholar 

  5. Clancy CE, Rudy Y (2002) Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208–1213

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fenton FH, Cherry EM (2008) Models of cardiac cell. Scholarpedia 3:1868

    Article  Google Scholar 

  7. Fink M, Niederer SA, Cherry EM, Fenton FH, Koivumäki JT, Seemann G, Thul R, Zhang H, Sachse FB, Beard D, Crampin EJ, Smith NP (2011) Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104:2–21

    Article  PubMed  Google Scholar 

  8. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    Article  CAS  PubMed  Google Scholar 

  9. Cherry EM, Greenside HS, Henriquez CS (2003) Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos 13:853–865

    Article  PubMed  Google Scholar 

  10. Bueno-Orovio A, Cherry EM, Fenton FH (2008) Minimal model for human ventricular action potentials in tissue. J Theor Biol 253:544–560

    Article  PubMed  Google Scholar 

  11. Fenton FH, Cherry EM, Hastings HM, Evans SJ (2002) Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12:852–892

    Article  PubMed  Google Scholar 

  12. Roth BJ, Wikswo JP (1986) A bidomain model for the extracellular potential and magnetic field of cardiac tissue. IEEE Trans Biomed Eng 33:467–469

    Article  CAS  PubMed  Google Scholar 

  13. Roth BJ (2008) Bidomain model. Scholarpedia 3:6221

    Article  Google Scholar 

  14. The CellML Project. www.cellml.org

  15. Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH (2011) Toward real-time simulation of cardiac dynamics. In: CMSB 2011: Proceedings of the 9th international conference on computational methods in systems biology. ACM, Paris, France, pp. 103–110

    Google Scholar 

  16. Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, Cherry EM, Clayton R, Fenton FH, Garny A, Heidenreich E, Land S, Maleckar M, Pathmanathan P, Plank G, Rodríguez JF, Roy I, Sachse FB, Seemann G, Skavhaug O, Smith NP (2011) Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos Transact A Math Phys Eng Sci 369:4331–4351

    Article  Google Scholar 

  17. Rush S, Larsen H (1978) A practical algorithm for solving dynamic membrane equations. IEEE Trans Biomed Eng 25:389–392

    Article  CAS  PubMed  Google Scholar 

  18. Hund TJ, Kucera JP, Otani NF, Rudy Y (2001) Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophys J 81:3324–3331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cherry EM, Hastings HM, Evans SJ (2008) Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells. Prog Biophys Mol Biol 98:24–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Henriquez CS, Papazoglou AA (1996) Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proc IEEE 84:334–354

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NSF grant CCF-0926190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Cherry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bell, M.M., Cherry, E.M. (2015). Computational Cardiac Electrophysiology: Implementing Mathematical Models of Cardiomyocytes to Simulate Action Potentials of the Heart. In: Skuse, G., Ferran, M. (eds) Cardiomyocytes. Methods in Molecular Biology, vol 1299. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2572-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2572-8_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2571-1

  • Online ISBN: 978-1-4939-2572-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics