Skip to main content

Regulation of NF-κB Signaling in Osteoclasts and Myeloid Progenitors

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is crucial for immune responses and skeletal development. Work in recent years has shown that various members of the NF-κB family are viable targets to regulate activity and survival of bone cells and hence bone metabolism. In this regard, deletion of upstream kinases or distal NF-κB subunits resulted with bone deformities. Thus, it has become increasingly apparent that detailed investigation of NF-κB in bone cells may provide opportunities to design new therapeutic modalities. In this chapter we present modified methodology describing efficient approaches to regulate the NF-κB pathway in vitro and in vivo to assess its function in bone cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Amer Y (2013) NF-kappaB signaling and bone resorption. Osteoporos Int 24:2377–2386

    Article  CAS  PubMed  Google Scholar 

  2. Shiotani A, Takami M, Itoh K, Shibasaki Y, Sasaki T (2002) Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec 268:137–146

    Article  CAS  PubMed  Google Scholar 

  3. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  4. Boyce BF, Yao Z, Xing L (2010) Functions of nuclear factor kappaB in bone. Ann N Y Acad Sci 1192:367–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Franzoso G, Carlson L, Xing L, Poljak L, Shores E, Brown K, Leonardi A, Tran T, Boyce B, Siebenlist U (1997) Requirment for NF-kappaB in osteoclast and B-cell development. Genes Dev 11:3482–3496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289

    Article  CAS  PubMed  Google Scholar 

  7. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Boyce BF, Xing L, Franzoso G, Siebenlist U (1999) Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25:137–139

    Article  CAS  PubMed  Google Scholar 

  10. Abu-Amer Y (2005) Advances in osteoclast differentiation and function. Curr Drug Targets Immune Endocr Metabol Disord 5:347–355

    Article  CAS  PubMed  Google Scholar 

  11. Lamothe B, Lai Y, Xie M, Schneider MD, Darnay BG (2013) TAK1 is essential for osteoclast differentiation and is an important modulator of cell death by apoptosis and necroptosis. Mol Cell Biol 33:582–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Hayden MS, Ghosh S (2004) Signaling to NF-κB. Genes Dev 18:2195–2224

    Google Scholar 

  13. Karin M, Yamamoto Y, Wang M (2004) The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Google Scholar 

  14. Siebenlist U, Franzoso G (2001) Structure, regulation and function of NF-κB. Proc Natl Acad Sci U S A 89:4333–4337

    Google Scholar 

  15. Ting AY, Endy D (2002) Signal transduction: decoding NF-κB signaling. Science 298:1189–1190

    Google Scholar 

  16. Wong B, Lee S, Vologodskia M, Steinman R, Choi Y (1998) The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor. J Biol Chem 273:28335–28359

    Google Scholar 

  17. May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S (2000) Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289:1550–1554

    Article  CAS  PubMed  Google Scholar 

  18. Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 65(Suppl 3):75–82

    CAS  Google Scholar 

  19. von Bismarck P, Winoto-Morbach S, Herzberg M, Uhlig U, Schutze S, Lucius R, Krause MF (2012) IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm Pharmacol Ther 25:228–235

    Article  Google Scholar 

  20. Cheng MX, Gong JP, Chen Y, Liu ZJ, Tu B, Liu CA (2012) NBD peptides protect against ischemia reperfusion after orthotopic liver transplantation in rats. J Surg Res 176:666–671

    Article  CAS  PubMed  Google Scholar 

  21. Dai S, Hirayama T, Abbas S, Abu-Amer Y (2004) The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem 279:37219–37222

    Article  CAS  PubMed  Google Scholar 

  22. Choi M, Rolle S, Wellner M, Cardoso MC, Scheidereit C, Luft FC, Kettritz R (2003) Inhibition of NF-κB by a TAT-NEMO-binding domain peptide accelerates constitutive apoptosis and abrogates LPS-delayed neutrophil apoptosis. Blood 102:2259–2267

    Google Scholar 

  23. Clohisy JC, Yamanaka Y, Faccio R, Abu-Amer Y (2006) Inhibition of IKK activation, through sequestering NEMO, blocks PMMA-induced osteoclastogenesis and calvarial inflammatory osteolysis. J Orthop Res 24:1358–1365

    Article  CAS  PubMed  Google Scholar 

  24. Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, Omata M (2007) Cutting edge: the I{kappa}B kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks inflammatory injury in murine colitis. J Immunol 179:2681–2685

    Article  CAS  PubMed  Google Scholar 

  25. Abu-Amer Y, Dowdy SF, Ross FP, Clohisy JC, Teitelbaum SL (2001) TAT fusion proteins containing tyrosine 42-deleted IkappaBalpha arrest osteoclastogenesis. J Biol Chem 276:30499–30503

    Article  CAS  PubMed  Google Scholar 

  26. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4:1449–1452

    Article  CAS  PubMed  Google Scholar 

  27. Schwarze S, Ho A, Vocero-Akbani A, Dowdy S (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  28. Schwarze S, Hruska K, Dowdy S (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  29. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  CAS  PubMed  Google Scholar 

  30. Otero JE, Chen T, Zhang K, Abu-Amer Y (2012) Constitutively active canonical NF-kappaB pathway induces severe bone loss in mice. PLoS One 7:e38694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bloor S, Ryzhakov G, Wagner S, Butler PJ, Smith DL, Krumbach R, Dikic I, Randow F (2008) Signal processing by its coil zipper domain activates IKK gamma. Proc Natl Acad Sci U S A 105:1279–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576

    Article  CAS  PubMed  Google Scholar 

  33. Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8:986–993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was supported by R01 AR049192, AR054329 (NIH/NIAMS), and 85100 from the Shriners Hospital for Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Abu-Amer Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Swarnkar, G., Abu-Amer, Y. (2015). Regulation of NF-κB Signaling in Osteoclasts and Myeloid Progenitors. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics