Skip to main content

Dissecting NF-κB Signaling Induced by Genotoxic Agents via Genetic Complementation of NEMO-Deficient 1.3E2 Cells

  • Protocol
  • First Online:
NF-kappa B

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1280))

Abstract

The transcription factor NF-κB regulates expression of a diverse set of genes to modulate multiple biological and pathological processes. Among these, NF-κB activation in response to genotoxic agents has received considerable attention due to its role in regulating cancer cell resistance to chemo- and radiation therapy. Furthermore, induction of this pathway by endogenous damage is further implicated in normal developmental processes, such as B cell development, and premature aging, among others. This pathway also serves as a signaling model in which nuclear initiated signals (DNA damage) are communicated to a cytoplasmic target (IκB kinase and NF-κB). Several of the critical molecular events of this nuclear to cytoplasmic NF-κB signaling cascade were discovered, in part, by genetic complementation analyses of the NEMO-deficient 1.3E2 mouse pre-B cell line. This chapter describes methods used to generate and analyze such reconstitution cell systems and certain caveats that are critical for proper interpretation of NEMO mutant defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  2. Matsuoka S, Huang M, Elledge SJ (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897

    Article  CAS  PubMed  Google Scholar 

  3. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  CAS  PubMed  Google Scholar 

  4. Kastan MB et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  CAS  PubMed  Google Scholar 

  5. Canman CE (1998) Activation of the ATM kinase by Ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  CAS  PubMed  Google Scholar 

  6. Cimprich KA, Shin TB, Keith CT, Schreiber SL (1996) cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci U S A 93:2850–2855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Carter T, Vancurová I, Sun I, Lou W, DeLeon S (1990) A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol 10:6460–6471

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Macleod KF et al (1995) p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9:935–944

    Article  CAS  PubMed  Google Scholar 

  9. Miyashita T et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    CAS  PubMed  Google Scholar 

  10. Huang TT et al (2000) NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem 275:9501–9509

    Article  CAS  PubMed  Google Scholar 

  11. Piret B, Piette J (1996) Topoisomerase poisons activate the transcription factor NF-kappaB in ACH-2 and CEM cells. Nucleic Acids Res 24:4242–4248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Karin M, Cao Y, Greten FR, Li Z-W (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    Article  CAS  PubMed  Google Scholar 

  13. Huang TT, Wuerzberger-Davis SM, Wu Z-H, Miyamoto S (2003) Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115:565–576

    Article  CAS  PubMed  Google Scholar 

  14. Wu Z-H, Shi Y, Tibbetts RS, Miyamoto S (2006) Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311:1141–1146

    Article  CAS  PubMed  Google Scholar 

  15. Stilmann M et al (2009) A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36:365–378

    Article  CAS  PubMed  Google Scholar 

  16. Li N et al (2001) ATM is required for IkappaB kinase (IKK) activation in response to DNA double strand breaks. J Biol Chem 276:8898–8903

    Article  CAS  PubMed  Google Scholar 

  17. Piret B, Schoonbroodt S, Piette J (1999) The ATM protein is required for sustained activation of NF-kappaB following DNA damage. Oncogene 18:2261–2271

    Article  CAS  PubMed  Google Scholar 

  18. Li N, Karin M (1998) Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci U S A 95:13012–13017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rooney JW, Emery DW, Sibley CH (1990) 1.3E2, a variant of the B lymphoma 70Z/3, defective in activation of NF-kappa B and OTF-2. Immunogenetics 31:73–78

    Article  CAS  PubMed  Google Scholar 

  20. Yamaoka S et al (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240

    Article  CAS  PubMed  Google Scholar 

  21. Rothwarf DM, Zandi E, Natoli G, Karin M (1998) IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395:297–300

    Article  CAS  PubMed  Google Scholar 

  22. McCool KW, Miyamoto S (2012) DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev 246:311–326

    Article  PubMed Central  PubMed  Google Scholar 

  23. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the many Miyamoto lab members, past and present, for their help in formulating this chapter. We would like to particularly thank Shelly Wuerzberger-Davis who has trained generations of lab members and who made significant contributions to this protocol. This work was funded by F30CA171840 (S.S.J.), NIH R01CA077474 (S.M.), NIH R01GM083681 (S.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Miyamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jackson, S.S., Miyamoto, S. (2015). Dissecting NF-κB Signaling Induced by Genotoxic Agents via Genetic Complementation of NEMO-Deficient 1.3E2 Cells. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2422-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2421-9

  • Online ISBN: 978-1-4939-2422-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics