Skip to main content

How FlAsH Got Its Sparkle: Historical Recollections of the Biarsenical-Tetracysteine Tag

  • Protocol
  • First Online:
Site-Specific Protein Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1266))

Abstract

The biarsenical-tetracysteine tagging system was the first of (and inspiration for) the now numerous methods for site-specifically labeling proteins in living cells with small molecules such as fluorophores. This historical recollection describes its conception and the trial-and-error chemical development required to become a versatile technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor DL, Amato P, Luby-Phelps K et al (1984) Fluorescent analog cytochemistry. Trends Biochem Sci 9:88–91

    Article  CAS  Google Scholar 

  2. Adams SR, Bacskai BJ, Taylor SS, Tsien RY (1993) Optical probes for cyclic AMP. In: Mason WT, Relf G (eds) Fluorescent probes for biological activity of living cells. Academic, London, pp 133–149

    Google Scholar 

  3. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  4. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. O’Neil KT, DeGrado WF (1990) A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651

    Article  PubMed  Google Scholar 

  6. Merutka G, Shalongo W, Stellwagen E (1991) A model peptide with enhanced helicity. Biochemistry 30:4245–4248

    Article  CAS  PubMed  Google Scholar 

  7. Merutka G, Stellwagen E (1991) Effect of amino acid ion pairs on peptide helicity. Biochemistry 3:1591–1594

    Article  Google Scholar 

  8. Ghadiri MR, Cho C (1990) Secondary structure nucleation in peptides. Transition metal ion stabilized alpha-helices. J Am Chem Soc 112:1630–1632

    Article  CAS  Google Scholar 

  9. Doak GO, Steinman HG (1946) The preparation of stibonic acids by the scheller reaction. J Am Chem Soc 68:1987–1989

    Article  CAS  PubMed  Google Scholar 

  10. Steinkop W, Schmidt S, Penz H (1934) Zur kenntnis organischer arsenverbindungen, XVII. Über ein polymeres phenylarsinoxyd und über reaktionen der m-phenylendiarsinsäure. J Prakt Chem 141:301–305

    Article  Google Scholar 

  11. Lieb H (1921) Aromatische diarsinsäuren und deren reduktionsprodukte (I. Mitteilung). Berichte d D Chem Gesellschaft 54:1511–1519

    Article  Google Scholar 

  12. Doak GO (1940) A modified Bart reaction. J Am Chem Soc 62:167–168

    Article  CAS  Google Scholar 

  13. Spang C, Edelmann FT, Noltemeyer M, Roesky HW (1989) Anorganische ringsysteme mit ferrocenyl-substituenten. Chem Ber 122:1247–1254

    Article  CAS  Google Scholar 

  14. Michaelis A (1908) Über die p-dimethylaminophenyl-arsinsäure (dimethyl-atoxyl). Berichte d D Chem Gesellschaft 41:1514–1516

    Article  CAS  Google Scholar 

  15. Jacobs WA, Heidelberger M (1919) The isomeric hydroxyphenylarsonic acids and the direct arsenation of phenol. J Am Chem Soc 41:1440–1450

    Article  CAS  Google Scholar 

  16. Benda L (1909) Über o-amino-arylarsinsäuren. Berichte d D Chem Gesellschaft 42:3619–3622

    Article  Google Scholar 

  17. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  PubMed  Google Scholar 

  18. Adams SR, Campbell RE, Gross LA et al (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  PubMed  Google Scholar 

  19. Madani F, Lind J, Damberg P et al (2009) Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy. J Am Chem Soc 131:4613–4615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Griffin BA, Adams SR, Jones J, Tsien RY (2000) Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods Enzymol 327:565–578

    Article  CAS  PubMed  Google Scholar 

  21. Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  CAS  PubMed  Google Scholar 

  22. Tour O, Meijer RM, Zacharias DA et al (2003) Genetically targeted chromophore-assisted light inactivation. Nat Biotechnol 21:1505–1508

    Article  CAS  PubMed  Google Scholar 

  23. Ju W, Morishita W, Tsui J et al (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann C, Gaietta G, Bünemann M et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171–176

    Article  CAS  PubMed  Google Scholar 

  25. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    Article  CAS  PubMed  Google Scholar 

  26. Gaietta GM, Giepmans BN, Deerinck TJ et al (2006) Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci U S A 103:17777–17782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tour O, Adams SR, Kerr RA et al (2007) Calcium green FlAsH as a genetically targeted small-molecule calcium indicator. Nat Chem Biol 3:423–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Martin BR, Deerinck TJ, Ellisman MH et al (2007) Isoform-specific PKA dynamics revealed by dye-triggered aggregation and DAKAP1alpha-mediated localization in living cells. Chem Biol 14:1031–1042

    Article  CAS  PubMed  Google Scholar 

  29. Adams SR, Tsien RY (2008) Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins. Nat Protoc 3:1527–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hoffmann C, Gaietta G, Zürn A et al (2010) Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc 5:1666–1677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Y. Tsien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Griffin, B.A., Adams, S.R., Tsien, R.Y. (2015). How FlAsH Got Its Sparkle: Historical Recollections of the Biarsenical-Tetracysteine Tag. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics