Skip to main content

Biochemical Characterization of G4 Quadruplex Telomerase RNA Unwinding by the RNA Helicase RHAU

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

G4 quadruplexes are stable secondary structures prevalent in DNA and RNA that exhibit diverse regulatory functions. Herein, we describe an in vitro technique using the purified RNA helicase RHAU to unwind a G4 quadruplex identified near the 5′ end of the human telomerase RNA (hTR). A synthetic RNA corresponding to the quadruplex forming region of hTR (hTR10–43), as well as a predicted complementary strand (25P1), are combined in a reaction containing the purified helicase and ATP. Reaction products and appropriate controls are resolved by native gel electrophoresis. Gels can be stained using a combination of total RNA and quadruplex-specific dyes to observe the expected quadruplex to duplex conversion. This straightforward method can be extended to study structural changes in other inter- or intramolecular quadruplex containing DNA/RNA molecules with the RHAU helicase or other RNA/DNA remodeling enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge S, Parkinson GN, Hazel P et al (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Millevoi S, Moine H, Vagner S (2012) G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA 3:495–507

    Article  CAS  PubMed  Google Scholar 

  3. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5:182–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lam EY, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796

    Article  PubMed Central  PubMed  Google Scholar 

  6. Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Raiber EA, Kranaster R, Lam E et al (2012) A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res 40:1499–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Paeschke K, Bochman ML, Garcia PD et al (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497:458–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Verma A, Yadav VK, Basundra R et al (2009) Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells. Nucleic Acids Res 37:4194–4204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40:4727–4741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shahid R, Bugaut A, Balasubramanian S (2010) The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49:8300–8306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Booy EP, Howard R, Marushchak O et al (2014) The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1. Nucleic Acids Res 42:3346–3361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Booy EP, Meier M, Okun N et al (2012) The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Res 40:4110–4124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gros J, Guedin A, Mergny JL, Lacroix L (2008) G-Quadruplex formation interferes with P1 helix formation in the RNA component of telomerase hTERC. Chembiochem 9:2075–2079

    Article  CAS  PubMed  Google Scholar 

  16. Marcel V, Tran PL, Sagne C et al (2011) G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32:271–278

    Article  CAS  PubMed  Google Scholar 

  17. Melko M, Bardoni B (2010) The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie 92:919–926

    Article  CAS  PubMed  Google Scholar 

  18. Neidle S (2010) Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277:1118–1125

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhang F, Li H et al (2012) Recent progress and future potential for metal complexes as anticancer drugs targeting G-quadruplex DNA. Curr Med Chem 19:2957–2975

    Article  CAS  PubMed  Google Scholar 

  20. Li Q, Xiang JF, Zhang H, Tang YL (2012) Searching drug-like anti-cancer compound(s) based on G-quadruplex ligands. Curr Pharm Des 18:1973–1983

    Article  CAS  PubMed  Google Scholar 

  21. Le Vy Thi T, Han S, Chae J, Park HJ (2012) G-quadruplex binding ligands: from naturally occurring to rationally designed molecules. Curr Pharm Des 18:1948–1972

    Article  Google Scholar 

  22. Amrane S, Kerkour A, Bedrat A et al (2014) Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J Am Chem Soc 136:5249–5252

    Article  CAS  PubMed  Google Scholar 

  23. Fu JJ, Li LY, Lu GX (2002) Molecular cloning and characterization of human DDX36 and mouse Ddx36 genes, new members of the DEAD/H box superfamily. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). Acta biochimica et biophysica Sinica 34:655–661

    Google Scholar 

  24. Creacy SD, Routh ED, Iwamoto F et al (2008) G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J Biol Chem 283:34626–34634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Giri B, Smaldino PJ, Thys RG et al (2011) G4 resolvase 1 tightly binds and unwinds unimolecular G4-DNA. Nucleic Acids Res 39:7161–7178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Meier M, Patel TR, Booy EP et al (2013) Binding of G-quadruplexes to the N-terminal recognition domain of the RNA helicase associated with AU-rich element (RHAU). J Biol Chem 288:35014–35027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vaughn JP, Creacy SD, Routh ED et al (2005) The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J Biol Chem 280:38117–38120

    Article  CAS  PubMed  Google Scholar 

  28. Huang W, Smaldino PJ, Zhang Q et al (2012) Yin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res 40:1033–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yoo JS, Takahasi K, Ng CS et al (2014) DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog 10:e1004012

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lattmann S, Giri B, Vaughn JP et al (2010) Role of the amino terminal RHAU-specific motif in the recognition and resolution of guanine quadruplex-RNA by the DEAH-box RNA helicase RHAU. Nucleic Acids Res 38:6219–6233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Souiden Y, Bouraoui A, Chaieb K, Mahdouani K (2010) Telomeres and telomerase as targeted therapies in cancer treatment. Bull Cancer 97:1087–1104

    CAS  PubMed  Google Scholar 

  33. Wyatt HD, West SC, Beattie TL (2010) InTERTpreting telomerase structure and function. Nucleic Acids Res 38:5609–5622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181

    PubMed Central  PubMed  Google Scholar 

  35. Chen JL, Greider CW (2003) Template boundary definition in mammalian telomerase. Genes Dev 17:2747–2752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li X, Nishizuka H, Tsutsumi K et al (2007) Structure, interactions and effects on activity of the 5′-terminal region of human telomerase RNA. J Biochem 141:755–765

    Article  CAS  PubMed  Google Scholar 

  37. Sexton AN, Collins K (2011) The 5′ guanosine tracts of human telomerase RNA are recognized by the G-quadruplex binding domain of the RNA helicase DHX36 and function to increase RNA accumulation. Mol Cell Biol 31:736–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Evan Booy is supported by the Manitoba Health Research Council postdoctoral fellowship. This work is supported by the Canadian Institutes of Health Research (CIHR)/Manitoba Health Research Council (MHRC) regional partnership program and a Cancer Research Society Operating Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean A. McKenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Booy, E.P., McRae, E.K.S., McKenna, S.A. (2015). Biochemical Characterization of G4 Quadruplex Telomerase RNA Unwinding by the RNA Helicase RHAU. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics