Characterization of TRAP-Mediated Regulation of the B. subtilis trp Operon Using In Vitro Transcription and Transcriptional Reporter Fusions In Vivo

  • Natalie M. McAdams
  • Paul GollnickEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1259)


In Bacillus subtilis, transcription of the tryptophan biosynthetic operon is regulated by an attenuation mechanism involving two alternative RNA secondary structures in the 5′ leader region upstream of the structural genes. Regulation is accomplished, at least in part, by controlling which RNA structure forms during transcription of the operon. When intracellular tryptophan levels are high, the trp RNA-binding attenuation protein (TRAP) binds to the nascent trp mRNA to promote formation of a transcription terminator structure so as to induce transcription termination prior to the structural genes. In limiting tryptophan, TRAP does not bind, the alternative antiterminator RNA structure forms, and the operon is transcribed. Several in vitro and in vivo assays have been utilized to study TRAP-mediated regulation of both transcription and translation. Here, we describe using in vitro transcription attenuation assays and in vivo trp-lacZ fusions to examine TRAP-mediated regulation of the trp genes.

Key words

trp RNA-binding attenuation protein (TRAP) Tryptophan Transcription attenuation In vitro transcription Reporter gene fusion 


  1. 1.
    Antson AA, Otridge J, Brzozowski AM et al (1995) The structure of trp RNA-binding attenuation protein. Nature 374:693–700PubMedCrossRefGoogle Scholar
  2. 2.
    Shimotsu H, Kuroda MI, Yanofsky C, Henner DJ (1986) Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. J Bacteriol 166:461–471PubMedCentralPubMedGoogle Scholar
  3. 3.
    Yakhnin AV, Babitzke P (2010) Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol Microbiol 76:690–705PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Babitzke P, Yealy J, Campanelli D (1996) Interaction of the trp RNA-Binding attenuation protein (TRAP) of Bacillus subtilis with RNA: effects of the number of GAG repeats, the nucleotides separating adjacent repeats, and RNA secondary structure. J Bacteriol 178:5159–5163PubMedCentralPubMedGoogle Scholar
  5. 5.
    Otridge J, Gollnick P (1993) MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc Natl Acad Sci U S A 90:128–132PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Babitzke P, Yanofsky C (1993) Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci U S A 90:133–137PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Yang M, de Saizieu A, van Loon AP, Gollnick P (1995) Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP). J Bacteriol 177:4272–4278PubMedCentralPubMedGoogle Scholar
  8. 8.
    Du H, Tarpey R, Babitzke P (1997) The trp RNA-binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J Bacteriol 179:2582–2586PubMedCentralPubMedGoogle Scholar
  9. 9.
    Kuroda MI, Henner D, Yanofsky C (1988) cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. J Bacteriol 170:3080–3088PubMedCentralPubMedGoogle Scholar
  10. 10.
    Merino E, Babitzke P, Yanofsky C (1995) trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon. J Bacteriol 177:6362–6370PubMedCentralPubMedGoogle Scholar
  11. 11.
    Du H, Babitzke P (1998) trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis. J Biol Chem 273:20494–20503PubMedCrossRefGoogle Scholar
  12. 12.
    Li PT, Gollnick P (2004) Characterization of a trp RNA-binding attenuation protein (TRAP) mutant with tryptophan independent RNA binding activity. J Mol Biol 335:707–722PubMedCrossRefGoogle Scholar
  13. 13.
    McElroy CA, Manfredo A, Gollnick P, Foster MP (2006) Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein. Biochemistry 45:7844–7853PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Payal V, Gollnick P (2006) Substitutions of Thr30 provide mechanistic insight into tryptophan-mediated activation of TRAP binding to RNA. Nucleic Acids Res 34:2933–2942PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Potter KD, Merlino NM, Jacobs T, Gollnick P (2011) TRAP binding to the Bacillus subtilis trp leader region RNA causes efficient transcription termination at a weak intrinsic terminator. Nucleic Acids Res 39:2092–2102PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    McAdams NM, Gollnick P (2014) The Bacillus subtilis TRAP protein can induce transcription termination in the leader region of the tryptophan biosynthetic (trp) operon independent of the trp attenuator RNA. PLoS One 9:e88097PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Szigeti R, Milescu M, Gollnick P (2004) Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis. J Bacteriol 186:818–828PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Yakhnin AV, Babitzke P (2002) NusA-stimulated RNA polymerase pausing and termination participates in the Bacillus subtilis trp operon attenuation mechanism invitro. Proc Natl Acad Sci U S A 99:11067–11072PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Valbuzzi A, Yanofsky C (2001) Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-inhibitory protein, AT. Science 293:2057–2059PubMedCrossRefGoogle Scholar
  20. 20.
    Yakhnin AV, Yakhnin H, Babitzke P (2008) Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci U S A 105:16131–16136PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Grundy FJ, Henkin TM (2004) Kinetic analysis of tRNA-directed transcription antitermination of the Bacillus subtilis glyQS gene in vitro. J Bacteriol 186:5392–5399PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    McDowell JC, Roberts JW, Jin DJ, Gross C (1994) Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266:822–825PubMedCrossRefGoogle Scholar
  23. 23.
    Yakhnin AV, Yakhnin H, Babitzke P (2006) RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction. Mol Cell 24:547–557PubMedCrossRefGoogle Scholar
  24. 24.
    Barbolina MV, Kristoforov R, Manfredo A et al (2007) The rate of TRAP binding to RNA is crucial for transcription attenuation control of the B. subtilis trp operon. J Mol Biol 370:925–938PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wright DJ, King K, Modrich P (1989) The negative charge of Glu-111 is required to activate the cleavage center of EcoRI endonuclease. J Biol Chem 264:11816–11821PubMedGoogle Scholar
  26. 26.
    Sharma S, Gollnick P (2014) Modulating TRAP-mediated transcription termination by AT during transcription of the leader region of the Bacillus subtilis trp operon. Nucleic Acids Research 42(9):5543–5455PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Grundy FJ, Yousef MR, Henkin TM (2005) Monitoring uncharged tRNA during transcription of the Bacillus subtilis glyQS gene. J Mol Biol 346:73–81PubMedCrossRefGoogle Scholar
  28. 28.
    Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746PubMedCentralPubMedGoogle Scholar
  29. 29.
    Shimotsu H, Henner DJ (1986) Construction of a single-copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis. Gene 43:85–94PubMedCrossRefGoogle Scholar
  30. 30.
    Yakhnin H, Yakhnin AV, Babitzke P (2007) Translation control of trpG from transcripts originating from the folate operon promoter of Bacillus subtilis is influenced by translation-mediated displacement of bound TRAP, while translation control of transcripts originating from a newly identified trpG promoter is not. J Bacteriol 189:872–879PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Yakhnin H, Zhang H, Yakhnin AV, Babitzke P (2004) The trp RNA-binding attenuation protein of Bacillus subtilis regulates translation of the tryptophan transport gene trpP (yhaG) by blocking ribosome binding. J Bacteriol 186:278–286PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Yakhnin H, Yakhnin AV, Babitzke P (2006) The trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis regulates translation initiation of ycbK, a gene encoding a putative efflux protein, by blocking ribosome binding. Mol Microbiol 61:1252–1266PubMedCrossRefGoogle Scholar
  33. 33.
    Bron S, Bolhuis A, Tjalsma H et al (1998) Protein secretion and possible roles for multiple signal peptidases for precursor processing in bacilli. J Biotechnol 64:3–13PubMedCrossRefGoogle Scholar
  34. 34.
    Yang M, Chen X, Militello K et al (1997) Alanine-scanning mutagenesis of Bacillus subtilis trp RNA-binding attenuation protein (TRAP) reveals residues involved in tryptophan binding and RNA binding. J Mol Biol 270:696–710PubMedCrossRefGoogle Scholar
  35. 35.
    Antson AA, Brzozowski AM, Dodson EJ et al (1994) 11-fold symmetry of the trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis determined by X-ray analysis. J Mol Biol 244:1–5PubMedCrossRefGoogle Scholar
  36. 36.
    Qi Y, Hulett FM (1998) PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197PubMedCrossRefGoogle Scholar
  37. 37.
    Henner DJ (1990) Inducible expression of regulatory genes in Bacillus subtilis. Methods Enzymol 185:223–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity at BuffaloBuffaloUSA
  2. 2.Department of Microbiology and ImmunologyUniversity at BuffaloBuffaloUSA

Personalised recommendations