Skip to main content

Key Points to Consider When Studying RNA Remodeling by Proteins

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

  • 2433 Accesses

Abstract

Cellular RNAs depend on proteins for efficient folding to specific functional structures and for transitions between functional structures. This dependence arises from intrinsic properties of RNA structure. Specifically, RNAs possess stable local structure, largely in the form of helices, and they have abundant opportunities to form alternative helices and tertiary contacts and therefore to populate alternative structures. Proteins with RNA chaperone activity, either ATP-dependent or ATP-independent, can promote structural transitions by interacting with single-stranded RNA (ssRNA) to compete away partner interactions and then release ssRNA so that it can form new interactions. In this chapter we review the basic properties of RNA and the proteins that function as chaperones and remodelers. We then use these properties as a foundation to explore key points for the design and interpretation of experiments that probe RNA rearrangements and their acceleration by proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518

    Article  CAS  PubMed  Google Scholar 

  2. Rajkowitsch L, Chen D, Stampfl S et al (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118–130

    Article  CAS  PubMed  Google Scholar 

  3. Pan C, Russell R (2010) Roles of DEAD-box proteins in RNA and RNP folding. RNA Biol 7:667–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Linder P, Jankowsky E (2011) From unwinding to clamping – the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder R, Barta A, Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5:908–919

    Article  CAS  PubMed  Google Scholar 

  7. Hilbert M, Karow AR, Klostermeier D (2009) The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Biol Chem 390:1237–1250

    Article  CAS  PubMed  Google Scholar 

  8. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36:19–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jarmoskaite I, Russell R (2014) RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem 83: 697–725

    Google Scholar 

  10. Levin JG, Mitra M, Mascarenhas A et al (2010) Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 7:754–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wagner EG (2013) Cycling of RNAs on Hfq. RNA Biol 10:619–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sigler PB (1975) An analysis of the structure of tRNA. Annu Rev Biophys Bioeng 4:477–527

    Article  CAS  PubMed  Google Scholar 

  13. Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874

    Article  CAS  PubMed  Google Scholar 

  14. Russell R (2008) RNA misfolding and the action of chaperones. Front Biosci 13:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sengoku T, Nureki O, Nakamura A et al (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300

    Article  CAS  PubMed  Google Scholar 

  16. Bono F, Ebert J, Lorentzen E et al (2006) The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126:713–725

    Article  CAS  PubMed  Google Scholar 

  17. Link TM, Valentin-Hansen P, Brennan RG (2009) Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106:19292–19297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589

    Article  CAS  PubMed  Google Scholar 

  19. Henn A, Bradley MJ, De La Cruz EM (2012) ATP utilization and RNA conformational rearrangement by DEAD-box proteins. Annu Rev Biophys 41:247–267

    Article  CAS  PubMed  Google Scholar 

  20. Rouskin S, Zubradt M, Washietl S et al (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rodriguez-Galan O, Garcia-Gomez JJ, de la Cruz J (2013) Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim Biophys Acta 1829:775–790

    Article  CAS  PubMed  Google Scholar 

  23. Strunk BS, Karbstein K (2009) Powering through ribosome assembly. RNA 15:2083–2104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Martin R, Straub AU, Doebele C et al (2013) DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol 10:4–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cordin O, Hahn D, Beggs JD (2012) Structure, function and regulation of spliceosomal RNA helicases. Curr Opin Cell Biol 24:431–438

    Article  CAS  PubMed  Google Scholar 

  26. Semlow DR, Staley JP (2012) Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 37:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cordin O, Beggs JD (2013) RNA helicases in splicing. RNA Biol 10:83–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Herschlag D (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn't always better. Proc Natl Acad Sci U S A 88:6921–6925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Konig SL, Liyanage PS, Sigel RK et al (2013) Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 10:133–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933

    Article  CAS  Google Scholar 

  31. Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chu VB, Bai Y, Lipfert J et al (2008) A repulsive field: advances in the electrostatics of the ion atmosphere. Curr Opin Chem Biol 12:619–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang Q, Fairman ME, Jankowsky E (2007) DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values. J Mol Biol 368:1087–1100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Rose IA, O’Connell EL, Litwin S (1974) Determination of the rate of hexokinase-glucose dissociation by the isotope-trapping method. J Biol Chem 249:5163–5168

    CAS  PubMed  Google Scholar 

  36. Fisher AJ, Smith CA, Thoden JB et al (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34:8960–8972

    Article  CAS  PubMed  Google Scholar 

  37. Golicnik M (2010) Metallic fluoride complexes as phosphate analogues for structural and mechanistic studies of phosphoryl group transfer enzymes. Acta Chim Slov 57:272–287

    CAS  PubMed  Google Scholar 

  38. Eckstein F (1985) Nucleoside phosphorothioates. Annu Rev Biochem 54:367–402

    Article  CAS  PubMed  Google Scholar 

  39. Peck ML, Herschlag D (2003) Adenosine 5′-O-(3-thio)triphosphate (ATPgammaS) is a substrate for the nucleotide hydrolysis and RNA unwinding activities of eukaryotic translation initiation factor eIF4A. RNA 9:1180–1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Fak JJ, Itkin A, Ciobanu DD et al (2004) Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry 43:7307–7327

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Potratz JP, Tijerina P et al (2008) DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci U S A 105:20203–20208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Liu F, Putnam A, Jankowsky E (2008) ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci U S A 105:20209–20214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu F, Putnam AA, Jankowsky E (2014) DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA. Biochemistry 53:423–433

    Article  CAS  PubMed  Google Scholar 

  44. Del Campo M, Lambowitz AM (2009) Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol Cell 35:598–609

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ward, W.L., Russell, R. (2015). Key Points to Consider When Studying RNA Remodeling by Proteins. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics