Skip to main content

Organotypic Slices and Biolistic Transfection for the Study of Serotonin Receptor Function in CNS Neurons

  • Protocol
  • First Online:
Serotonin Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 95))

  • 805 Accesses

Abstract

Brain slices offer a powerful avenue for the study of signaling mechanisms in the central nervous system (CNS). They combine many of the experimental advantages of isolated in vitro experimental preparations with preservation of key aspects of the neuronal anatomy and physiology seen in whole animals. Acutely prepared slices have proven very useful for the study of serotonin (5-HT) signaling in the CNS, and neuronal signaling in general. The usefulness of this preparation has been expanded by the ability to place brain slices in organotypic culture and transfect them using plasmid DNA. In this chapter, we describe how we have implemented the preparation of organotypic slices in our laboratories as well as transfection of the slices using biolistic (gene gun) approaches. We finish with a discussion of some of the experimental strategies that are possible with these techniques and their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  2. Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nature Biotechnol 31:23–24

    Article  CAS  Google Scholar 

  3. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wefers B, Panda SK, Ortiz O, Brandl C, Hensler S, Hansen J, Wurst W, Kuhn R (2013) Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat Protoc 8:2355–2379

    Article  CAS  PubMed  Google Scholar 

  5. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Adesnik H, Li G, During MJ, Pleasure SJ, Nicoll RA (2008) NMDA receptors inhibit synapse unsilencing during brain development. Proc Natl Acad Sci U S A 105:5597–5602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62:254–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tokuoka H, Muramatsu S, Sumi-Ichinose C, Sakane H, Kojima M, Aso Y, Nomura T, Metzger D, Ichinose H (2011) Compensatory regulation of dopamine after ablation of the tyrosine hydroxylase gene in the nigrostriatal projection. J Biol Chem 286:43549–43558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yakel JL, Trussell LO, Jackson MB (1988) Three serotonin responses in cultured mouse hippocampal and striatal neurons. J Neurosci 8:1273–1285

    CAS  PubMed  Google Scholar 

  11. Bonnin A, Torii M, Wang L, Rakic P, Levitt P (2007) Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10:588–597

    Article  CAS  PubMed  Google Scholar 

  12. Riccio O, Jacobshagen M, Golding B, Vutskits L, Jabaudon D, Hornung JP, Dayer AG (2011) Excess of serotonin affects neocortical pyramidal neuron migration. Transl Psychiatry 1:e47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Biewenga JE, Destree OH, Schrama LH (1997) Plasmid-mediated gene transfer in neurons using the biolistics technique. J Neurosci Meth 71:67–75

    Article  CAS  Google Scholar 

  14. Wellmann H, Kaltschmidt B, Kaltschmidt C (1999) Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Meth 92:55–64

    Article  CAS  Google Scholar 

  15. Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13:1263–1268

    Article  CAS  PubMed  Google Scholar 

  16. Foehring RC, Guan D, Toleman T, Cantrell AR (2011) Whole cell recording from an organotypic slice preparation of neocortex. J Vis Exp 52:e2600

    Google Scholar 

  17. McAllister AK (2000) Biolistic transfection of neurons. Sci STKE 2000(51):pl1

    CAS  PubMed  Google Scholar 

  18. McAllister AK (2004) Biolistic transfection of cultured organotypic brain slices. Methods Mol Biol 245:197–206

    CAS  PubMed  Google Scholar 

  19. O’Brien JA, Lummis SC (2013) Biolistic transfection of neurons in organotypic brain slices. Methods Mol Biol 940:157–166

    PubMed  Google Scholar 

  20. Finley M, Fairman D, Liu D, Li P, Wood A, Cho S (2004) Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Res 1001:125–132

    Article  CAS  PubMed  Google Scholar 

  21. Arsenault J, O’Brien JA (2013) Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 6:544

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kim H, Kim E, Park M, Lee E, Namkoong K (2013) Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Progr Neuropsychopharmacol Biol Psychiatry 41:36–43

    Article  CAS  Google Scholar 

  23. Mewes A, Franke H, Singer D (2012) Organotypic brain slice cultures of adult transgenic P301S mice: a model for tauopathy studies. PLoS One 7:e45017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Su T, Paradiso B, Long YS, Liao WP, Simonato M (2011) Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 1385:68–76

    Article  CAS  PubMed  Google Scholar 

  25. Wilhelmi E, Schoder UH, Benabdallah A, Sieg F, Breder J, Reymann KG (2002) Organotypic brain-slice cultures from adult rats: approaches for a prolonged culture time. Altern Lab Anim 30:275–283

    CAS  PubMed  Google Scholar 

  26. Soares C, Lee KF, Nassrallah W, Beique JC (2013) Differential subcellular targeting of glutamate receptor subtypes during homeostatic synaptic plasticity. J Neurosci 33:13547–13559

    Article  CAS  PubMed  Google Scholar 

  27. Walker PD, Andrade R, Quinn JP, Bannon MJ (2000) Real-time analysis of preprotachykinin promoter activity in single cortical neurons. J Neurochem 75:882–885

    Article  CAS  PubMed  Google Scholar 

  28. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Meth 37:173–182

    Article  CAS  Google Scholar 

  29. Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced after depolarization in cerebral cortex. J Neurosci 29:10038–10046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Koyama R, Muramatsu R, Sasaki T, Kimura R, Ueyama C, Tamura M, Tamura N, Ichikawa J, Takahashi N, Usami A, Yamada MK, Matsuki N, Ikegaya Y (2007) A low-cost method for brain slice cultures. J Pharmacol Sci 104:191–194

    Article  CAS  PubMed  Google Scholar 

  31. O’Brien JA, Holt M, Whiteside G, Lummis SC, Hastings MH (2001) Modifications to the hand-held gene gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Meth 112:57–64

    Article  Google Scholar 

  32. Beique JC, Andrade R (2003) PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol 546:859–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Palmer AE, Qin Y, Park JG, McCombs JE (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  CAS  PubMed  Google Scholar 

  35. Kammermeier PJ, Ikeda SR (1999) Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22:819–829

    Article  CAS  PubMed  Google Scholar 

  36. Villalobos C, Foehring RC, Lee JC, Andrade R (2011) Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow after hyperpolarization current in the cerebral cortex. J Neurosci 31:18303–18312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Citri A, Bhattacharyya S, Ma C, Morishita W, Fang S, Rizo J, Malenka RC (2010) Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J Neurosci 30:16437–16452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ehrlich I, Klein M, Rumpel S, Malinow R (2007) PSD-95 is required for activity-driven synapse stabilization. Proc Natl Acad Sci U S A 104:4176–4181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nakagawa T, Futai K, Lashuel HA, Lo I, Okamoto K, Walz T, Hayashi Y, Sheng M (2004) Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44:453–467

    Article  CAS  PubMed  Google Scholar 

  40. Cohen LD, Zuchman R, Sorokina O, Muller A, Dieterich DC, Armstrong JD, Ziv T, Ziv NE (2013) Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8:e63191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A 104:9870–9875

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wang X, He L, Wu YI, Hahn KM, Montell DJ (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27:941–945

    Article  CAS  PubMed  Google Scholar 

  44. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author’s laboratory is supported by NIH grants MH43985 and MH100850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McGregor, K., Beïque, JC., Andrade, R. (2015). Organotypic Slices and Biolistic Transfection for the Study of Serotonin Receptor Function in CNS Neurons. In: Blenau, W., Baumann, A. (eds) Serotonin Receptor Technologies. Neuromethods, vol 95. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2187-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2187-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2186-7

  • Online ISBN: 978-1-4939-2187-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics