Skip to main content

Immunolocalization of Serotonergic Neurons in Arthropod Developmental and Phylogenetic Neuroanatomy

  • Protocol
  • First Online:
Serotonin Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 95))

Abstract

Serotonin immunostaining is a widely used method not only in neuroanatomy but also in developmental and evolutionary biology over a wide range of animal phyla. In such phylogenetic or developmental analyses, the complete set of serotonergic neurons and their major branching patterns need to be visualized. Here, established standard staining methods are sometimes limited because of insufficient amounts of the neurotransmitter. In this chapter, we describe techniques that help to overcome some of these limitations by ensuring that all serotonergic cells contain a sufficient amount of serotonin for detection. We suggest two preincubation protocols for living nervous tissue to improve subsequent serotonin immunostaining: (1) Tissue is preincubated with the precursor of serotonin, 5-hydroxy-l-tryptophan, resulting in the biosynthesis of serotonin in serotonergic neurons. (2) Tissue is preincubated with serotonin itself, resulting in specific uptake of the transmitter by the serotonin reuptake system. Other methods, like immunostaining of tryptophan hydroxylase, which is the rate-limiting enzyme in serotonin biosynthesis, and single-cell labeling aided by uptake of autofluorescent compounds, are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    Article  CAS  Google Scholar 

  2. Axelsson S, Björklund A, Falck B, Lindvall O, Svensson LA (1973) Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol Scand 87:57–62

    Article  CAS  PubMed  Google Scholar 

  3. Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localization of serotonin in the central nervous system by immunocytochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Article  CAS  PubMed  Google Scholar 

  4. Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1982) Antibodies to serotonin for neuroimmunocytochemical studies. J Histochem Cytochem 30:756–759

    Article  CAS  PubMed  Google Scholar 

  5. Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140

    Article  PubMed  Google Scholar 

  6. Tyrer NM, Turner JD, Altman JS (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330

    Article  CAS  PubMed  Google Scholar 

  7. Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85

    Article  PubMed  Google Scholar 

  8. Taghert PH, Goodman CS (1984) Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 4:989–1000

    CAS  PubMed  Google Scholar 

  9. Harzsch S, Waloszek D (2000) Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: a character to study aspects of arthropod phylogeny. Arthropod Struct Dev 29:307–322

    Article  CAS  PubMed  Google Scholar 

  10. Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    Article  CAS  PubMed  Google Scholar 

  11. Dacks AM, Christensen TA, Hildebrand JG (2006) Phylogeny of a serotonin-immunoreactive neuron in the primary olfactory center of the insect brain. J Comp Neurol 498:727–746

    Article  CAS  PubMed  Google Scholar 

  12. Lorbeer RA, Heidrich M, Lorbeer C, Ramírez Ojeda DF, Bicker G, Meyer H, Heisterkamp A (2011) Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph. Opt Express 19:5419–5430

    Article  CAS  PubMed  Google Scholar 

  13. Peters BH, Butler SV, Tyrer NM (1987) Morphology, ultrastructure and synapse distribution of putative serotonergic salivary neurons in the locust. Neuroscience 23:705–719

    Article  CAS  PubMed  Google Scholar 

  14. Schachtner J, Bräunig P (1995) Activity pattern of suboesophageal ganglion cells innervating the salivary glands of the locust Locusta migratoria. J Comp Physiol A 176:491–501

    Article  CAS  PubMed  Google Scholar 

  15. Klemm N, Hustert R, Cantera R, Nässel DR (1986) Neurons reactive to antibodies against serotonin in the stomatogastric nervous system and in the alimentary canal of locust and crickets (Orthoptera, Insecta). Neuroscience 17:247–261

    Article  CAS  PubMed  Google Scholar 

  16. Stern M, Knipp S, Bicker G (2007) Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J Comp Neurol 501:38–51

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe H, Shimohigashi M, Yokohari F (2014) Serotonin-immunoreactive sensory neurons in the antenna of the cockroach Periplaneta americana. J Comp Neurol 522:414–434

    Article  CAS  PubMed  Google Scholar 

  18. Nässel DR, Cantera R (1985) Mapping of serotonin-immunoreactive neurons in the larval nervous system of the flies Calliphora erythrocephala and Sarcophaga bullata. A comparison with ventral ganglia in adult animals. Cell Tissue Res 239:423–434

    Article  Google Scholar 

  19. Condron BG (1999) Serotonergic neurons transiently require a midline-derived FGF signal. Neuron 24:531–540

    Article  CAS  PubMed  Google Scholar 

  20. Oland LA, Kirschenbaum SR, Pott WM, Mercer AR, Tolbert LP (1995) Development of an identified serotonergic neuron in the antennal lobe of the moth and effects of reduction in serotonin during construction of olfactory glomeruli. J Neurobiol 28:248–267

    Article  CAS  PubMed  Google Scholar 

  21. Daubert EA, Condron BG (2010) Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci 33:424–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stern M, Bicker G (2008) Nitric oxide regulates axonal regeneration in an insect embryonic CNS. Dev Neurobiol 68:295–308

    Article  CAS  PubMed  Google Scholar 

  23. Klemm N (1985) The distribution of biogenic monoamines in invertebrates. In: Gills R, Balthazer J (eds) Neurobiology. Comparative aspects of aminergic neurons. Springer, Berlin, pp 280–296

    Google Scholar 

  24. Hay-Schmidt A (2000) The evolution of the serotonergic nervous system. Proc Biol Sci 267:1071–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S (2012) Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol Biol 12:168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zieger E, Bräunig P, Harzsch S (2013) A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the Marbled Crayfish and the Migratory Locust: evidence for a homologous protocerebral group of neurons. Arthropod Struct Dev 42:507–520

    Article  PubMed  Google Scholar 

  27. Harzsch S (2007) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species Phylogeny Evol 1:33–57

    Google Scholar 

  28. Stemme T, Iliffe TM, von Reumont BM, Koenemann S, Harzsch S, Bicker G (2013) Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): support for a sister group relationship of Remipedia and Hexapoda? BMC Evol Biol 13:119

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stegner ME, Brenneis G, Richter S (2014) The ventral nerve cord in Cephalocarida (Crustacea): new insights into the ground pattern of Tetraconata. J Morphol. 275:269–294

    Article  CAS  PubMed  Google Scholar 

  30. Lundell MJ, Hirsh J (1998) eagle is required for the specification of serotonin neurons and other neuroblast 7-3 progeny in the Drosophila CNS. Development 125:463–472

    CAS  PubMed  Google Scholar 

  31. Schmid A, Chiba A, Doe CQ (1999) Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development 126:4653–4689

    CAS  PubMed  Google Scholar 

  32. Hörner M (1999) Cytoarchitecture of histamine-, dopamine-, serotonin- and octopamine-containing neurons in the cricket ventral nerve cord. Microsc Res Tech 44:137–165

    Article  PubMed  Google Scholar 

  33. Wildt M, Goergen EM, Benton JL, Sandeman DC, Beltz BS (2004) Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J Exp Biol 207:3765–3774

    Article  CAS  PubMed  Google Scholar 

  34. Catarsi S, Garcia-Gil M, Traina G, Brunelli M (1990) Seasonal variation of serotonin content and nonassociative learning of swim induction in the leech Hirudo medicinalis. J Comp Physiol A 167:469–474

    Article  CAS  PubMed  Google Scholar 

  35. Neckameyer WS, Coleman CM, Eadie S, Goodwin SF (2007) Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. Genes Brain Behav 6:756–769

    Article  CAS  PubMed  Google Scholar 

  36. Bao X, Tian X, Zhao Z, Qu Y, Wang B, Zhang J, Liu T, Yang L, Lv J, Song C (2008) Immunohistochemical evidence for the presence of tryptophan hydroxylase in the brains of insects as revealed by sheep anti-tryptophan hydroxylase polyclonal antibody. Cell Tissue Res 332:555–563

    Article  CAS  PubMed  Google Scholar 

  37. Bao X, Wang B, Zhang J, Yan T, Yang W, Jiao F, Liu J, Wang S (2010) Localization of serotonin/tryptophan-hydroxylase-immunoreactive cells in the brain and suboesophageal ganglion of Drosophila melanogaster. Cell Tissue Res 340:51–59

    Article  CAS  PubMed  Google Scholar 

  38. Giang T, Ritze Y, Rauchfuss S, Ogueta M, Scholz H (2011) The serotonin transporter expression in Drosophila melanogaster. J Neurogenet 25:17–26

    Article  CAS  PubMed  Google Scholar 

  39. Stern M (2009) The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons. J Comp Physiol A 195:123–137

    Article  Google Scholar 

  40. Antonsen BL, Paul DH (2001) Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Neurol 439:450–468

    Article  CAS  PubMed  Google Scholar 

  41. Stemme T, Stern M, Bicker G (2012) Chemical architecture of the serotonin transmitter system in Zygentoma. In: Abstract booklet 2nd Satellite Symposium of the Arthropod NeuroNetwork, University of Konstanz, Germany, 20–21 September 2012.

    Google Scholar 

  42. Benton JL, Goergen EM, Rogan SC, Beltz BS (2008) Hormonal and synaptic influences of serotonin on adult neurogenesis. Gen Comp Endocrinol 158:183–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mulisch M, Welsch U (2010) Romeis—Mikroskopische Technik, 18th edn. Spektrum, Heidelberg

    Google Scholar 

  44. Stern M, Böger N, Eickhoff R, Lorbeer C, Kerssen U, Ziegler M, Martinelli GP, Holstein GR, Bicker G (2010) Development of nitrergic neurons in the nervous system of the locust embryo. J Comp Neurol 518:1157–1175

    CAS  PubMed  Google Scholar 

  45. Eickhoff R, Bicker G (2012) Developmental expression of cell recognition molecules in the mushroom body and antennal lobe of the locust Locusta migratoria. J Comp Neurol 520:2021–2040

    Article  CAS  PubMed  Google Scholar 

  46. Livingstone MS, Schaeffer SF, Kravitz EA (1981) Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: serotonin and octopamine are contained in different nerve endings. J Neurobiol 12:27–54

    Article  CAS  PubMed  Google Scholar 

  47. Lent CM (1984) Quantitative effects of a neurotoxin upon serotonin levels within tissue compartments of the medicinal leech. J Neurobiol 15:309–323

    Article  CAS  PubMed  Google Scholar 

  48. Beltz BS, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

    CAS  PubMed  Google Scholar 

  49. Benton JL, Beltz BS (2001) Effects of serotonin depletion on local interneurons in the developing olfactory pathway of lobsters. J Neurobiol 46:193–205

    Article  CAS  PubMed  Google Scholar 

  50. Kanai Y, Endou H (2001) Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2:339–354

    Article  CAS  PubMed  Google Scholar 

  51. Coleman CM, Neckameyer WS (2004) Substrate regulation of serotonin and dopamine synthesis in Drosophila. Invert Neurosci 5:85–96

    Article  CAS  PubMed  Google Scholar 

  52. Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321:387–403

    Article  CAS  PubMed  Google Scholar 

  53. Humphreys CJ, Wall SC, Rudnick G (1994) Ligand binding to the serotonin transporter: equilibria, kinetics, and ion dependence. Biochemistry 33:9118–9125

    Article  CAS  PubMed  Google Scholar 

  54. Richards KS, Simon DJ, Pulver SR, Beltz BS, Marder E (2003) Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. J Neurobiol 54:380–392

    Article  CAS  PubMed  Google Scholar 

  55. Barker EL, Perlman MA, Adkins EM, Houlihan WJ, Pristupa ZB, Niznik HB, Blakely RD (1998) High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis. An aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J Biol Chem 273:19459–19468

    Article  CAS  PubMed  Google Scholar 

  56. Nässel DR, Elekes K (1985) Serotonergic terminals in the neural sheath of the blowfly nervous system: electron microscopical immunocytochemistry and 5,7-dihydroxytryptamine labelling. Neuroscience 15:293–307

    Article  PubMed  Google Scholar 

  57. Washington B, Higgins DE, McAdory B, Newkirk RF (1994) Serotonin-immunoreactive neurons and endogenous serotonin in the opisthosomal ventral nerve cord of the horseshoe crab, Limulus polyphemus. J Comp Neurol 347:312–320

    Article  CAS  PubMed  Google Scholar 

  58. Silva NL, Mariani AP, Harrison NL, Barker JL (1988) 5,7-Dihydroxytryptamine identifies living dopaminergic neurons in mesencephalic cultures. Proc Natl Acad Sci U S A 85:7346–7350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Nicole Böger and Sabine Knipp, who contributed to our investigations of the serotonergic system. Our research is done in the lab of Gerd Bicker whom we thank for encouragement and continuous support. Torben Stemme was supported by a scholarship of the German National Academic Foundation (Studienstiftung des Deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stemme, T., Stern, M. (2015). Immunolocalization of Serotonergic Neurons in Arthropod Developmental and Phylogenetic Neuroanatomy. In: Blenau, W., Baumann, A. (eds) Serotonin Receptor Technologies. Neuromethods, vol 95. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2187-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2187-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2186-7

  • Online ISBN: 978-1-4939-2187-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics