Skip to main content

Microfluidic Devices for Nucleic Acid (NA) Isolation, Isothermal NA Amplification, and Real-Time Detection

  • Protocol
  • First Online:
Mobile Health Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1256))

Abstract

Molecular (nucleic acid)-based diagnostics tests have many advantages over immunoassays, particularly with regard to sensitivity and specificity. Most on-site diagnostic tests, however, are immunoassay-based because conventional nucleic acid-based tests (NATs) require extensive sample processing, trained operators, and specialized equipment. To make NATs more convenient, especially for point-of-care diagnostics and on-site testing, a simple plastic microfluidic cassette (“chip”) has been developed for nucleic acid-based testing of blood, other clinical specimens, food, water, and environmental samples. The chip combines nucleic acid isolation by solid-phase extraction; isothermal enzymatic amplification such as LAMP (Loop-mediated AMPlification), NASBA (Nucleic Acid Sequence Based Amplification), and RPA (Recombinase Polymerase Amplification); and real-time optical detection of DNA or RNA analytes. The microfluidic cassette incorporates an embedded nucleic acid binding membrane in the amplification reaction chamber. Target nucleic acids extracted from a lysate are captured on the membrane and amplified at a constant incubation temperature. The amplification product, labeled with a fluorophore reporter, is excited with a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such as available in a smartphone). For blood analysis, a companion filtration device that separates plasma from whole blood to provide cell-free samples for virus and bacterial lysis and nucleic acid testing in the microfluidic chip has also been developed. For HIV virus detection in blood, the microfluidic NAT chip achieves a sensitivity and specificity that are nearly comparable to conventional benchtop protocols using spin columns and thermal cyclers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olasagasasti F, Ruiz de Gordoa J (2012) Miniaturized technology for protein and nucleic acid point-of-care testing. Transl Res 160(5):332–345

    Article  Google Scholar 

  2. Weigl B, Domingo G, LaBarre P, Gerlach J (2008) Towards non- and minimally instrumented, microfluidics-based diagnostics devices. Lab Chip 81:1999–2014

    Article  Google Scholar 

  3. Wang S, Xu F, Demirci U (2010) Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnol Adv 28:770–781

    Article  CAS  Google Scholar 

  4. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134

    Article  CAS  Google Scholar 

  5. Myers FB, Henrikson RH, Bone J, Lee LP (2013) A handheld point-of-care genomic diagnostic system. PLoS One 8(8):e70266

    Article  CAS  Google Scholar 

  6. Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462(26):461–464

    Article  CAS  Google Scholar 

  7. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515

    Article  CAS  Google Scholar 

  8. Fu E, Yager P, Fioriano PN, Christodoulides N, McDevitt J (2011) Perspectives on diagnostics for global health. IEEE Pulse 2(6):40–50

    Article  Google Scholar 

  9. Mairfair J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9:4804–4823

    Article  Google Scholar 

  10. Mondal S, Venkataraman V (2007) Miniaturized devices for DNA amplification and fluorescence based detection. J Indian Inst Sci 87(3):309–332

    CAS  Google Scholar 

  11. Yoon J-Y, Kim B (2012) Lab-on-a-chip pathogen sensors for food safety. Sensors 12:10713–10741

    Article  CAS  Google Scholar 

  12. Tourlousse DM, Ahmad F, Stedtfeld RD, Seyrig G, Tiedje JM, Hashham SA (2012) A polymer microfluidic chip for quantitative detection of multiple water and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification. Biomed Microdevices 14:769–778

    Article  CAS  Google Scholar 

  13. Sakamoto C, Yamaguchi N, Yamada M, Nagase H, Seki M, Nasu M (2007) Rapid quantification of bacterial cells in potable water using a simplified microfluidic device. J Microbiol Methods 68:643–647

    Article  CAS  Google Scholar 

  14. Lochhead MJ, Todorof K, Delaney M, Ives JT, Greef C, Moll K, Rowley K, Vogel K, Myatt C, Zhang X-Q, Logan C, Benson C, Reed S, Schooley RT (2011) Rapid multiplexed immunoassay for simultaneous serodiagnosis of HIV-1 and coinfections. J Clin Microbiol 49(10):3584–3590

    Article  CAS  Google Scholar 

  15. Lin C-C, Wang J-H, Wu H-W, Lee G-B (2010) Microfluidic immunoassays. J Lab Autom 15:253–274

    Article  CAS  Google Scholar 

  16. Ngom B, Guo Y, Wang X, Bi D (2010) Development of lateral flow strip technology for detection of infectious agents and chemical contaminants. Anal Bioanal Chem 397(3):1113–1135

    Article  CAS  Google Scholar 

  17. Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39(2):485–493

    Article  CAS  Google Scholar 

  18. Opel KL, Chang D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33

    Article  CAS  Google Scholar 

  19. Wiedbrauk DL, Werner JC, Drevon AM (1995) Inhibition of PCR by aqueous and vitreous fluids. J Clin Microbiol 33(10):2643–3646

    CAS  Google Scholar 

  20. Burns DE, Ashwood ER, Burtis CA (2007) Fundamentals of molecular diagnostics. Saunders, St. Louis

    Google Scholar 

  21. Zhang C, Xing D (2007) Minaturized chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 35(13):4223–4237

    Google Scholar 

  22. Park S, Zhang Y, Lin S, Wang T-H, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29:830–839

    Google Scholar 

  23. Lee J-G, Cheong KH, Huh N, Kim S, Choi J-W, Ki C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6:886–895

    Google Scholar 

  24. Wang J, Chen Z, Corstjens PL, Mauk MG, Bau HH (2006) A disposable microfluidic cassette for DNA amplification and detection. Lab Chip 6(1):46–53

    Article  Google Scholar 

  25. Chen Z, Mauk MG, Wang J, Abrams WR, Corstjens PL, Niedbala RS, Malamud D, Bau HH (2007) A microfluidic system for saliva-based detection of infectious diseases. Ann N Y Acad Sci 1098:429–436

    Article  CAS  Google Scholar 

  26. Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S, Ongagna S, Abrams WR, Malamud D, Corstjens PLAM, Bau HH (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12(4):705–719

    Article  Google Scholar 

  27. Qiu X, Mauk MG, Chen D, Liu C, Bau HH (2010) A large volume, portable, real-time PCR reactor. Lab Chip 10(22):3170–3177

    Article  CAS  Google Scholar 

  28. Qiu X, Chen D, Liu C, Mauk MG, Kientz T, Bau HH (2011) A portable, integrated analyzer for microfluidic-based molecular analysis. Biomed Microdevices 13:809–817

    Article  CAS  Google Scholar 

  29. Liu C, Mauk MG, Hart R, Qiu X, Bau HH (2011) A self-heating cartridge for molecular diagnostics. Lab Chip 11:2686–2692

    Article  CAS  Google Scholar 

  30. Chang C-C, Chen C-C, Wei S-C, Lu H-H, Liang Y-H, Lin C-W (2012) Diagnostic devices for isothermal nucleic acid amplification. Sensors 12:8319–8337

    Article  CAS  Google Scholar 

  31. Duarte C, Salm E, Dorvel B, Reddy B Jr, Bashir R (2013) On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed Microdevices 15(5):821–830

    Article  CAS  Google Scholar 

  32. Fang X, Liu Y, Kong J, Jiang X (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82:3002–3006

    Article  CAS  Google Scholar 

  33. Wu Q, Jin W, Zhou C, Han S, Yang W, Zhu Q, Jin Q, Mu Y (2011) Integrated glass microdevice for nucleic acid purification, loop-mediated isothermal amplification, and online detection. Anal Chem 83:3336–3342

    Article  CAS  Google Scholar 

  34. Xu L-Y, Jin W, Zhu Q-Y, Yang W-X, Wu Q-Q, Jin Q-H, Mu Y (2011) Real-time detection of loop-mediated isothermal amplification reaction on microfluidic chip. 2011 5th International conference on bioinformatics and biomedical engineering, Wuhan, China, IEEE, Piscataway, New Jersey, 2011

    Google Scholar 

  35. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  CAS  Google Scholar 

  36. Mori Y, Kanda H, Notomi T (2013) Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J Infect Chemother 19(3):404–411

    Article  CAS  Google Scholar 

  37. Parida M, Posadas G, Inoue S, Hasebe F, Morita K (2004) Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42(1):257–263

    Article  CAS  Google Scholar 

  38. Curtis KA, Rudoph DL, Owen SM (2008) Rapid detection HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 151:264–270

    Article  CAS  Google Scholar 

  39. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92

    Article  CAS  Google Scholar 

  40. Gulliksen A, Solli LA, Drese KS, Sörensen O, Karlsen F, Rogne H, Hovig E, Sirevåg R (2005) Parallel nanoliter detection of cancer markers using polymer chips. Lab Chip 5(4):416–420

    Google Scholar 

  41. Piepenburg O, Williams CH, Stemple DL, Ames NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204

    Article  Google Scholar 

  42. Lutz S, Weber P, Focke M, Faltin B, Hoffman J, Müller C, Mark D, Roth G, Munday P, Armes N, Piepenberg O, Zengerle R, von Stetten F (2010) Microfluidic lab-on-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893

    Article  CAS  Google Scholar 

  43. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5(8):795–800

    Article  CAS  Google Scholar 

  44. Chow WH, McCloskey C, Tong Y, Hu L, You Q, Kelly CP, Kong H, Tang YW, Tang W (2008) Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn 10(5):452–458

    Article  CAS  Google Scholar 

  45. Mahalanabis M, Do J, Al-Muayad H, Zhang JY, Klapperich CM (2010) An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices 12:353–359

    Article  CAS  Google Scholar 

  46. Francois P, Tangomo M, Hibbs J, Bonetti E-J, Boehme CC, Notomi T, Perkins MD, Shrenzel J (2011) Robustness of loop-mediated isothermal amplification reaction for diagnostics applications. FEMS Immunol Med Microbiol 62:41–48

    Article  CAS  Google Scholar 

  47. Liu C, Geva E, Mauk MG, Qiu X, Abrams WR, Malamud D, Curtis K, Owen SM, Bau HH (2011) An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst 136:2069–2076

    Article  CAS  Google Scholar 

  48. Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH (2012) A low-cost microfluidic chip for rapid genotyping of malaria-transmitted mosquitoes. PLoS One 7(8):e42222

    Article  CAS  Google Scholar 

  49. Stevens DY, Petri CR, Osborn JL, Spicar-Mihalic P, McKenzie KG, Yager P (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8(12):2038–2045

    Article  CAS  Google Scholar 

  50. Fridley GE, Le HQ, Fu E, Yager P (2012) Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip 12(21):4321–4327

    Article  CAS  Google Scholar 

  51. Hitzbleck M, Gervais L, Delamarche E (2011) Controlled release of reagents in capillary-driven microfluidics using reagent integrators. Lab Chip 11:2680–2685

    Article  CAS  Google Scholar 

  52. Kim J, Byun D, Mauk MG, Bau HH (2009) A disposable, self-contained PCR chip. Lab Chip 9(4):606–612

    Article  CAS  Google Scholar 

  53. Kim J, Mauk MG, Chen D, Qiu X, Kim J, Gale B, Bau HH (2010) A PCR reactor with an integrated alumina membrane for nucleic acid isolation. Analyst 135:2408–2414

    Article  CAS  Google Scholar 

  54. Ziober B, Mauk M, Chen Z, Bau HH (2008) Lab-on-a-chip for oral cancer screening and diagnosis. Head Neck 30(1):111–121

    Article  Google Scholar 

  55. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111

    Article  CAS  Google Scholar 

  56. Black I (1998) Laser cutting of perspex. J Mater Sci Lett 17:1531–1533

    Article  CAS  Google Scholar 

  57. Pfleging W, Baldus O (2006) Laser patterning and welding of transparent polymers for microfluidic device fabrication. Laser-based micropackaging. Proc SPIE 6107:e610705

    Article  Google Scholar 

  58. Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J (2007) Rapid prototyping of microfluidic chips in COC.J Micromech Microeng 17:333–341

    Article  CAS  Google Scholar 

  59. Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182–189

    Article  CAS  Google Scholar 

  60. Tsao C-W, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6:1–16

    Article  CAS  Google Scholar 

  61. Hsu Y-C, Chen T-Y (2007) Applying Taguchi methods for solvent-assistant PMMA bonding technique for static and dynamic μ-TAS devices. Biomed Microdevices 9:513–522

    Article  Google Scholar 

  62. Umbrecht F, Müller D, Gattiker F, Boutry CM, Neuenschwander J, Sennhauser U, Hierold C (2009) Solvent assisted bonding of polymethylmethacrylate: characterization using the response surface methodology. Sens Actuators A Phys 156:121–128

    Article  CAS  Google Scholar 

  63. Kodzius R, Xiang K, Wu J, Yi X, Gong X, Foulds IG, Wen W (2012) Inhibitory effect of common microfluidic materials on PCR. Sens Actuators B 161:349–358

    Article  CAS  Google Scholar 

  64. Giordano BC, Copeland ER, Landers JP (2001) Towards dynamic coating of glass microchip chambers for amplifying DNA via polymerase chain reaction. Electrophoresis 22:334–340

    Article  CAS  Google Scholar 

  65. Gonzalez A, Grimes R, Walsh EJ, Dalton T, Davies M (2007) Interaction of quantitative PCR with polymeric surfaces. Biomed Microdevices 9:261–266

    Article  CAS  Google Scholar 

  66. Lou XJ, Panaro NJ, Wilding P, Fortina P, Kricka LJ (2004) Increased amplification efficiency of microchip-based PCR by dynamic surface passivation. Biotechniques 36:248–251

    Google Scholar 

  67. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser fluorescence. Lab Chip 5:1348–1354

    Article  CAS  Google Scholar 

  68. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  Google Scholar 

  69. Greenfield L, White TJ (1993) Sample preparation methods. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular biology: principles and applications. American Soc. Microbiology, Washington, DC, pp 122–137

    Google Scholar 

  70. Kemp BM, Monroe C, Smith DG (2006) Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts. J Archaeol Sci 33:1680–1689

    Article  Google Scholar 

  71. Breadmore MC, Wolfe KA, Arcibal IG, Leung WK, Dickson D, Giordano BC, Power ME, Ferrance JP, Feldman SH, Norris PM, Landers JP (2003) Microchip-based purification of DNA from biological samples. Anal Chem 75:1880–1886

    Article  CAS  Google Scholar 

  72. Chen X, Cui DF, Liu C (2006) High purity DNA extraction with a SPE microfluidic chip using KI as the binding salt. Chin Chem Lett 17(8):1101–1104

    CAS  Google Scholar 

  73. Chen X, Cui D, Sun J, Zhang L, Li H (2013) Microdevice-based DNA extraction method using green reagent. Key Eng Mater 562–565:1111–1115

    Article  Google Scholar 

  74. Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated structures. Biosens Bioelectron 30(19):59–66

    Article  Google Scholar 

  75. Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479

    Article  CAS  Google Scholar 

  76. Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JF, Norris PM, Landers JP (2002) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–733

    Article  CAS  Google Scholar 

  77. Chung YC, Jan M-S, Lin Y-C, Lin J-H, Cheng W-C, Fan C-Y (2004) Microfluidic chip for high efficiency DNA extraction. Lab Chip 4:141–147

    Article  CAS  Google Scholar 

  78. Gudnason H, Dufva M, Bang DD, Wolff A (2007) Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res 35(19):e127

    Article  Google Scholar 

  79. Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 26(9):2150–2155

    Article  CAS  Google Scholar 

  80. Lee D-S, Chang B-H, Chen P-H (2005) Development of a CCD-based fluorimeter for real-time PCR machine. Sens Actuators B 107:872–881

    Google Scholar 

  81. Walczak R, Bembnowicz P, Szczepanska P, Dziuban JA, Golonka L, Koszur J, Bang DD (2008), Miniaturized system for real-time PCR in low-cost disposable LTCC chip with integrated optical waveguide. Twelfth Int’l conference on miniaturized systems for chemistry and the life sciences, San Diego. pp 1078–1080

    Google Scholar 

  82. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–322

    Google Scholar 

  83. Lee D-S, Chou WP, Yeh SH, Chen PJ, Chen PH (2011) DNA detection using commercial mobile phones. Biosens Bioelectron 26:4349–4354

    Google Scholar 

  84. Ahmad F, Seyrig G, Tourlousse DM, Stedtfeld RD, Tiedje JM, Hashsham SA (2011) A CCDbased fluorescence imaging for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips. Biomed Microdevices 13:929–937

    Google Scholar 

  85. Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031

    Google Scholar 

  86. Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC.J Micromech Microeng 20:065016

    Article  Google Scholar 

  87. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009) Colorimetric detection of loop-mediated isothermal amplification reaction using hydroxy naphthol blue. Biotechniques 46(3):167–172

    Article  CAS  Google Scholar 

  88. Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882

    Article  CAS  Google Scholar 

  89. Liu C, Mauk M, Gross R, Bushman FD, Edelstein PH, Colman RG, Bau HH (2013) Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal Chem 85:10463–10470

    Article  CAS  Google Scholar 

  90. Gallagher ML, Burke WF Jr, Orzech K (1987) Carrier RNA enhancement of recovery from dilute solutions. Biochem Biophys Res Commun 144(1):271–276

    Article  CAS  Google Scholar 

  91. Shaw KJ, Thain L, Docker PT, Dyer CE, Greenman J, Greenway GM, Haswell SJ (2009) The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths. Anal Chim Acta 652:231–233

    Article  CAS  Google Scholar 

  92. Shaw KJ, Oakley J, Docker PT, Dyer CE, Greenman J, Greenway GM, Haswell SJ (2008) DNA extraction, using carrier RNA, integrated with agarose gel-based polymerase reaction in a microfluidic device. Twelfth international conference on miniaturized systems in chemistry and the life sciences, San Diego. pp 1069–1071

    Google Scholar 

Download references

Acknowledgments

The work reported here was supported, in part, by NIH Grants U01DE017855 (Bau, Mauk) and K25AI099160 (Liu), and a grant from the Commonwealth of Pennsylvania’s Ben Franklin Technology Development Authority through the Ben Franklin Technology Partners of Southeastern Pennsylvania (Bau, Sadik).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim H. Bau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mauk, M.G., Liu, C., Sadik, M., Bau, H.H. (2015). Microfluidic Devices for Nucleic Acid (NA) Isolation, Isothermal NA Amplification, and Real-Time Detection. In: Rasooly, A., Herold, K. (eds) Mobile Health Technologies. Methods in Molecular Biology, vol 1256. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2172-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2172-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2171-3

  • Online ISBN: 978-1-4939-2172-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics