Skip to main content

Two-Photon Excitation Microscopy and Its Applications in Neuroscience

  • Protocol
  • First Online:
Advanced Fluorescence Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1251))

Abstract

Two-photon excitation (2PE) overcomes many challenges in fluorescence microscopy. Compared to confocal microscopy, 2PE microscopy improves depth penetration, owing to the longer excitation wavelength required and to the ability to collect scattered emission photons as a useful signal. It also minimizes photodamage because lower energy photons are used and because fluorescence is confined to the geometrical focus of the laser spot. 2PE is therefore ideal for high-resolution, deep-tissue, time-lapse imaging of dynamic processes in cell biology. Here, we provide examples of important applications of 2PE for in vivo imaging of neuronal structure and signals; we also describe how it can be combined with optogenetics or photolysis of caged molecules to simultaneously probe and control neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyawaki A (2011) Proteins on the move: insights gained from fluorescent protein technologies. Nat Rev Mol Cell Biol 12:656–668

    Article  CAS  PubMed  Google Scholar 

  2. Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91:5740–5747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wilt BA, Burns LD, Wei Ho ET et al (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  5. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    Article  CAS  PubMed  Google Scholar 

  6. Sigrist SJ, Sabatini BL (2012) Optical super-resolution microscopy in neurobiology. Curr Opin Neurobiol 22:86–93

    Article  CAS  PubMed  Google Scholar 

  7. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  8. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  CAS  PubMed  Google Scholar 

  9. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  CAS  PubMed  Google Scholar 

  10. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    Article  CAS  PubMed  Google Scholar 

  11. Nikolenko V, Nemet B, Yuste R (2003) A two-photon and second-harmonic microscope. Methods 30:3–15

    Article  CAS  PubMed  Google Scholar 

  12. Entenberg D, Wyckoff J, Gligorijevic B et al (2011) Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protoc 6:1500–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gray NW, Weimer RM, Bureau I et al (2006) Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol 4:e370

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kobat D, Durst ME, Nishimura N et al (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Nat Protoc 17:13354–13364

    Google Scholar 

  15. Mittmann W, Wallace DJ, Czubayko U et al (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat Neurosci 14:1089–1093

    Article  CAS  PubMed  Google Scholar 

  16. Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13

    Article  PubMed Central  PubMed  Google Scholar 

  17. Grewe BF, Helmchen F (2009) Optical probing of neuronal ensemble activity. Curr Opin Neurobiol 19(5):520–529

    Article  CAS  PubMed  Google Scholar 

  18. Mostany R, Chowdhury TG, Johnston DG et al (2010) Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex. J Neurosci 30:14116–14126

    Article  CAS  PubMed  Google Scholar 

  19. Mostany R, Portera-Cailliau C (2008) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp. (12). pii: 678. doi:10.3791/678. PMID: 19066563

  20. Schaffer CB, Friedman B, Nishimura N et al (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4:e22

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kleinfeld D, Mitra PP, Helmchen F et al (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95:15741–15746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Klunk WE, Bacskai BJ, Mathis CA et al (2002) Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol 61:797–805

    CAS  PubMed  Google Scholar 

  23. Nimmerjahn A, Kirchhoff F, Kerr JN et al (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  CAS  PubMed  Google Scholar 

  24. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  25. Chudakov DM, Matz MV, Lukyanov S et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

  26. Lutcke H, Murayama M, Hahn T et al (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circ 4:9

    Google Scholar 

  27. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23

    Article  CAS  PubMed  Google Scholar 

  29. Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  CAS  PubMed  Google Scholar 

  30. Gan WB, Grutzendler J, Wong WT et al (2000) Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27:219–225

    Article  CAS  PubMed  Google Scholar 

  31. Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142

    CAS  PubMed  Google Scholar 

  32. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885

    Article  CAS  PubMed  Google Scholar 

  33. Garaschuk O, Milos R, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1:380–386

    Article  CAS  PubMed  Google Scholar 

  34. Golshani P, Portera-Cailliau C (2008) In vivo 2-photon calcium imaging in layer 2/3 of mice. J Vis, Exp

    Google Scholar 

  35. MacLean J, Yuste R (2005) Imaging action potentials with calcium indicators: practical guide. In: Yuste R, Konnerth A (eds) Imaging neurons a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 351–355

    Google Scholar 

  36. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  37. Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  38. Trachtenberg JT, Chen BE, Knott GW et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  39. Jefferis GS, Livet J (2012) Sparse and combinatorial neuron labelling. Curr Opin Neurobiol 22:101–110

    Article  CAS  PubMed  Google Scholar 

  40. Judkewitz B, Rizzi M, Kitamura K et al (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4:862–869

    Article  CAS  PubMed  Google Scholar 

  41. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  42. Dixit R, Lu F, Cantrup R et al (2011) Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp. (52). pii: 2957. doi:10.3791/2957. PMID: 21730943

  43. Cruz-Martin A, Crespo M, Portera-Cailliau C (2010) Delayed stabilization of dendritic spines in fragile X mice. J Neurosci 30:7793–7803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Atasoy D, Aponte Y, Su HH et al (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Lowery RL, Majewska AK (2010) Intracranial injection of adeno-associated viral vectors. J Vis Exp. (45). pii: 2140. doi: 10.3791/2140. PMID: 21113119

  46. Schultz BR, Chamberlain JS (2008) Recombinant adeno-associated virus transduction and integration. Mol Ther 16:1189–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Holtmaat A, Bonhoeffer T, Chow DK et al (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mostany R, Portera-Cailliau C (2008) A craniotomy surgery procedure for chronic brain imaging. J Vis Exp. (12). pii: 680. doi:10.3791/680. PMID: 19066562

  49. Cruz-Martin A, Portera-Cailliau C (2010) In vivo imaging of axonal and dendritic structures in developing cortex. In: Sharpe J, Wong R (eds) Imaging in developmental biology: a laboratory manual, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 513–522

    Google Scholar 

  50. Yang G, Pan F, Parkhurst CN et al (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208

    Article  CAS  PubMed  Google Scholar 

  51. Drew PJ, Shih AY, Driscoll JD et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Jung JC, Mehta AD, Aksay E et al (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92:3121–3133

    Article  PubMed Central  PubMed  Google Scholar 

  53. Xu HT, Pan F, Yang G et al (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  CAS  PubMed  Google Scholar 

  54. Yasuda R, Harvey CD, Zhong H et al (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283–291

    Article  CAS  PubMed  Google Scholar 

  55. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  CAS  PubMed  Google Scholar 

  56. Yu X, Zuo Y (2011) Spine plasticity in the motor cortex. Curr Opin Neurobiol 21:169–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  58. Spires TL, Meyer-Luehmann M, Stern EA et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tsai J, Grutzendler J, Duff K et al (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    Article  CAS  PubMed  Google Scholar 

  60. Sabatini BL, Svoboda K (2000) Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408:589–593

    Article  CAS  PubMed  Google Scholar 

  61. Chen X, Leischner U, Rochefort NL et al (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475:501–505

    Article  CAS  PubMed  Google Scholar 

  62. Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:283–288

    Article  CAS  PubMed  Google Scholar 

  63. Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102:14063–14068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ohki K, Chung S, Ch'ng YH et al (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603

    Article  CAS  PubMed  Google Scholar 

  65. Gobel W, Helmchen F (2007) In vivo calcium imaging of neural network function. Physiology 22:358–365

    Article  CAS  PubMed  Google Scholar 

  66. Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411

    Article  CAS  PubMed  Google Scholar 

  67. Perron A, Mutoh H, Akemann W et al (2009) Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Neural Circ 2:5

    Google Scholar 

  68. Ahrens KF, Heider B, Lee H et al (2012) Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat. Front Neural Circ 6:15

    Google Scholar 

  69. Chanda B, Blunck R, Faria LC et al (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 8:1619–1626

    Article  CAS  PubMed  Google Scholar 

  70. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  71. Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  73. Zhang YP, Oertner TG (2007) Optical induction of synaptic plasticity using a light-sensitive channel. Nat Methods 4:139–141

    Article  CAS  PubMed  Google Scholar 

  74. Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34

    Article  CAS  PubMed  Google Scholar 

  75. Papagiakoumou E, Anselmi F, Begue A et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854

    Article  CAS  PubMed  Google Scholar 

  76. Ellis-Davies GC (2009) Basics of photoactivation. Cold Spring Harb Protoc. pdb top55

    Google Scholar 

  77. Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  CAS  PubMed  Google Scholar 

  78. Sobczyk A, Scheuss V, Svoboda K (2005) NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J Neurosci 25:6037–6046

    Article  CAS  PubMed  Google Scholar 

  79. Ashby MC, Isaac JT (2011) Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines. Neuron 70:510–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Noguchi J, Nagaoka A, Watanabe S et al (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol 589:2447–2457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Oheim M, Beaurepaire E, Chaigneau E et al (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    Article  CAS  PubMed  Google Scholar 

  82. Rueckel M, Mack-Bucher JA, Denk W (2006) Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc Natl Acad Sci U S A 103:17137–17142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Booth MJ (2007) Adaptive optics in microscopy. Philos Transact A Math Phys Eng Sci 365:2829–2843

    Article  Google Scholar 

  84. Engelbrecht CJ, Gobel W, Helmchen F (2009) Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt Express 17:6421–6435

    Article  CAS  PubMed  Google Scholar 

  85. Flusberg BA, Cocker ED, Piyawattanametha W et al (2005) Fiber-optic fluorescence imaging. Nat Methods 2:941–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Cheng A, Goncalves JT, Golshani P et al (2011) Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat Methods 8:139–142

    Google Scholar 

  87. Lillis KP, Eng A, White JA et al (2008) Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution. J Neurosci Methods 172:178–184

    Article  PubMed Central  PubMed  Google Scholar 

  88. Grewe BF, Langer D, Kasper H et al (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405

    Article  CAS  PubMed  Google Scholar 

  89. Duemani Reddy G, Kelleher K, Fink R et al (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11:713–720

    Article  CAS  PubMed  Google Scholar 

  90. Planchon TA, Gao L, Milkie DE et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 8:417–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Truong TV, Supatto W, Koos DS et al (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8:757–760

    Article  CAS  PubMed  Google Scholar 

  92. Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circ 2:5

    Google Scholar 

  93. Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kerr JN, Nimmerjahn A (2012) Functional imaging in freely moving animals. Curr Opin Neurobiol 22:45–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Stein Oppenheimer Endowment Award and by grants from the US National Institutes of Health (5R01HD054453 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and 5RC1NS068093 from the National Institute of Neurological Disorders and Stroke).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Portera-Cailliau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mostany, R., Miquelajauregui, A., Shtrahman, M., Portera-Cailliau, C. (2015). Two-Photon Excitation Microscopy and Its Applications in Neuroscience. In: Verveer, P. (eds) Advanced Fluorescence Microscopy. Methods in Molecular Biology, vol 1251. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2080-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2080-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2079-2

  • Online ISBN: 978-1-4939-2080-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics