Skip to main content

Integrating Proteomics Profiling Data Sets: A Network Perspective

  • Protocol
  • First Online:
Clinical Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1243))

Abstract

Understanding disease mechanisms often requires complex and accurate integration of cellular pathways and molecular networks. Systems biology offers the possibility to provide a comprehensive map of the cell’s intricate wiring network, which can ultimately lead to decipher the disease phenotype. Here, we describe what biological pathways are, how they function in normal and abnormal cellular systems, limitations faced by databases for integrating data, and highlight how network models are emerging as a powerful integrative framework to understand and interpret the roles of proteins and peptides in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223

    Article  CAS  PubMed  Google Scholar 

  2. Krishnamurthy L, Nadeau J, Ozsoyoglu G et al (2003) Pathways database system: an integrated system for biological pathways. Bioinformatics 19:930–937

    Article  CAS  PubMed  Google Scholar 

  3. Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31:2–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cho DY, Kim YA, Przytycka TM (2012) Chapter 5: network biology approach to complex diseases. PLoS Comput Biol 8:e1002820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang F, Drabier R (2012) IPAD: the integrated pathway analysis database for systematic enrichment analysis. BMC Bioinformatics 13(Suppl 15):S7

    Article  CAS  Google Scholar 

  6. Huang H, Wu X, Sonachalam M et al (2012) PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries. BMC Bioinformatics 13(Suppl 15):S2

    Article  CAS  Google Scholar 

  7. Losko S, Heumann K (2009) Semantic data integration and knowledge management to represent biological network associations. In: Nikolsky Y, Bryant J (eds) Protein networks and pathway analysis. Humana. Methods Mol Biol. 563: 241–258

    Google Scholar 

  8. Guo X, Shriver CD, Hu H et al (2005) Analysis of metabolic and regulatory pathways through gene ontology-derived semantic similarity measures. AMIA Annu Symp Proc 2005:972

    PubMed Central  Google Scholar 

  9. Sahoo SS, Bodenreider O, Rutter JL et al (2008) An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence. J Biomed Inform 41:752–765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wixon J, Kell D (2000) The Kyoto encyclopedia of genes and genomes: KEGG. Yeast 17:48–55

    Article  CAS  PubMed  Google Scholar 

  11. Kanehisa M, Goto S, Kawashima S et al (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Van Iersel MP, Kelder T, Pico AR et al (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  16. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed Central  PubMed  Google Scholar 

  17. Berriz GF, King OD, Bryant B et al (2003) Characterizing gene sets with FuncAssociate. Bioinformatics 19:2502–2504

    Article  CAS  PubMed  Google Scholar 

  18. Warde-Farley D, Donaldson SL, Comes O et al (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bauer-Mehren A, Rautschka M, Sanz F et al (2010) DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 26:2924–2926

    Article  CAS  PubMed  Google Scholar 

  20. Merico D, Isserlin R, Stueker O et al (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yang L, Walker JR, Hogenesch JB et al (2008) NetAtlas: a Cytoscape plugin to examine signaling networks based on tissue gene expression. In Silico Biol 8:47–52

    PubMed  Google Scholar 

  22. Doncheva NT, Assenov Y, Domingues FS et al (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7:670–685

    Article  CAS  PubMed  Google Scholar 

  23. Razick S, Mora A, Michalickova K et al (2011) iRefScape. A Cytoscape plug-in for visualization and data mining of protein interaction data from iRefIndex. BMC Bioinformatics 12:388

    Article  PubMed Central  PubMed  Google Scholar 

  24. Gao J, Ade AS, Tarcea VG et al (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25:137–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Srivas R, Hannum G, Ruscheinski J et al (2011) Assembling global maps of cellular function through integrative analysis of physical and genetic networks. Nat Protoc 6:1308–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Avila-Campillo I, Drew K, Lin J et al (2007) BioNetBuilder: automatic integration of biological networks. Bioinformatics 23:392–393

    Article  CAS  PubMed  Google Scholar 

  27. Martin A, Ochagavia ME, Rabasa LC et al (2010) BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics 11:91

    Article  PubMed Central  PubMed  Google Scholar 

  28. Prifti E, Zucker J-D, Clement K et al (2008) FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24:2636–2638

    Article  CAS  PubMed  Google Scholar 

  29. Creek DJ, Jankevics A, Burgess KE et al (2012) IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28:1048–1049

    Article  CAS  PubMed  Google Scholar 

  30. Clasquin MF, Melamud E, Rabinowitz JD (2012) LC-MS data processing with MAVEN: a metabolomic analysis and visualization engine. Curr Protoc Bioinformatics 37:14.11.1–14.11.23

    Google Scholar 

  31. Scheltema RA, Jankevics A, Jansen RC et al (2011) PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem 83:2786–2793

    Article  CAS  PubMed  Google Scholar 

  32. Chokkathukalam A, Jankevics A, Creek DJ et al (2013) mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29:281–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Przytycka TM, Singh M, Slonim DK (2010) Toward the dynamic interactome: it’s about time. Brief Bioinform 11:15–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583:3891–3894

    Article  CAS  PubMed  Google Scholar 

  35. Cusick ME, Klitgord N, Vidal M et al (2005) Interactome: gateway into systems biology. Hum Mol Genet 14:R171–R181

    Article  CAS  PubMed  Google Scholar 

  36. De Las Rivas J, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ideker T, Ozier O, Schwikowski B et al (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(1):S233–S240

    Article  PubMed  Google Scholar 

  38. Go GO (2011) The gene ontology. Genome 2009:1–13

    Google Scholar 

  39. Dominiczak AF, Herget-Rosenthal S, Delles C et al (2010) Systems biology to battle vascular disease. Nephrol Dial Transplant 25:1019–1022

    Article  PubMed  Google Scholar 

  40. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed Central  PubMed  Google Scholar 

  41. Müller F-J, Laurent LC, Kostka D et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455:401–405

    Article  PubMed Central  PubMed  Google Scholar 

  42. Chowdhury SA, Koyutürk M (2010) Identification of coordinately dysregulated subnetworks in complex phenotypes. Pac Symp Biocomput. 133–144

    Google Scholar 

  43. Chowdhury SA, Nibbe RK, Chance MR et al (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18:263–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Dao P, Colak R, Salari R et al (2010) Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26:i625–i631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Dao P, Wang K, Collins C et al (2011) Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics 27:i205–i213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee E, Chuang H-Y, Kim J-W et al (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4:e1000217

    Article  PubMed Central  PubMed  Google Scholar 

  47. Fechete R, Heinzel A, Perco P et al (2011) Mapping of molecular pathways, biomarkers and drug targets for diabetic nephropathy. Proteomics Clin Appl 5:354–366

    Article  CAS  PubMed  Google Scholar 

  48. Vidal M, Cusick ME, Barabási A-L (2011) Interactome networks and human disease. Cell 144:986–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Suthram S, Dudley JT, Chiang AP et al (2010) Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol 6:e1000662

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chu L-H, Chen B-S (2008) Construction of a cancer-perturbed protein–protein interaction network for discovery of apoptosis drug targets. BMC Syst Biol 2:56

    Article  PubMed Central  PubMed  Google Scholar 

  51. Magrane M, Consortium U (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009

    Article  Google Scholar 

  52. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  53. Smedley D, Haider S, Ballester B et al (2009) BioMart: biological queries made easy. BMC Genomics 10:22

    Article  PubMed Central  PubMed  Google Scholar 

  54. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–24504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Stark C, Breitkreutz B-J, Chatr-Aryamontri A et al (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res 39:D698–D704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Isserlin R, El-Badrawi RA, Bader GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database (Oxford) 2011:baq037

    Article  Google Scholar 

  58. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Pruitt KD, Tatusova T, Brown GR et al (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. doi:10.1093/nar/gkr1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Xenarios I, Salwínski L, Duan XJ et al (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Huang DW, Sherman BT, Tan Q et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Marie Curie Actions—BCMolMed (FP7-PEOPLE-2012-ITN-EID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bhat, A., Dakna, M., Mischak, H. (2015). Integrating Proteomics Profiling Data Sets: A Network Perspective. In: Vlahou, A., Makridakis, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 1243. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1872-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1872-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1871-3

  • Online ISBN: 978-1-4939-1872-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics