Skip to main content

Quantitative Analysis of Chromosome Localization in the Nucleus

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

The spatial organization of the genome within the interphase nucleus is important for mediating genome functions. The radial organization of chromosome territories has been studied traditionally using two-dimensional fluorescence in situ hybridization (FISH) using labeled whole chromosome probes. Information from 2D-FISH images is analyzed quantitatively and is depicted in the form of the spatial distribution of chromosomes territories. However, to the best of our knowledge no open-access tools are available to delineate the position of chromosome territories from 2D-FISH images. In this chapter we present a methodology termed Image Analysis of Chromosomes for computing their localization (IMACULAT). IMACULAT is an open-access, automated tool that partitions the cell nucleus into shells of equal area or volume and computes the spatial distribution of chromosome territories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Lewis J, Raff M et al (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  2. Boyle S, Gilchrist S, Bridger JM et al (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  3. Cremer C, Zorn C, Cremer T (1974) An ultraviolet laser microbeam for 257 nm. Microsc Acta 75:331–337

    PubMed  CAS  Google Scholar 

  4. Croft JA, Bridger JM, Boyle S et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Zorn C, Cremer C, Cremer T et al (1979) Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Distribution in interphase and metaphase. Exp Cell Res 124:111–119

    Article  PubMed  CAS  Google Scholar 

  6. Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  PubMed  CAS  Google Scholar 

  7. Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12:425–432

    Article  PubMed  CAS  Google Scholar 

  8. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  9. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  10. Tanabe H, Muller S, Neusser M et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99: 4424–4429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Foster HA, Griffin DK et al (2012) Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues. BMC Cell Biol 13:30

    Article  PubMed  PubMed Central  Google Scholar 

  12. Strouboulis J, Wolffe AP (1996) Functional compartmentalization of the nucleus. J Cell Sci 109:1991–2000

    PubMed  CAS  Google Scholar 

  13. van Driel R, Humbel B, de Jong L (1991) The nucleus: a black box being opened. J Cell Biochem 47:311–316

    Article  PubMed  Google Scholar 

  14. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  PubMed  CAS  Google Scholar 

  15. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284

    Article  PubMed  CAS  Google Scholar 

  16. Brown JM, Leach J, Reittie JE et al (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172:177–187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Eils R, Dietzel S, Bertin E et al (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135:1427–1440

    Article  PubMed  CAS  Google Scholar 

  18. Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ferrai C, Xie SQ, Luraghi P et al (2010) Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol 8:e1000270

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chubb JR, Boyle S, Perry P et al (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  PubMed  CAS  Google Scholar 

  21. Kim SH, McQueen PG, Lichtman MK et al (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105:292–301

    Article  PubMed  CAS  Google Scholar 

  22. Hewitt SL, High FA, Reiner SL et al (2004) Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol 34:3604–3613

    Article  PubMed  CAS  Google Scholar 

  23. Zink D, Amaral MD, Englmann A et al (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Gilbert N, Gilchrist S, Bickmore WA (2005) Chromatin organization in the mammalian nucleus. Int Rev Cytol 242:283–336

    Article  PubMed  CAS  Google Scholar 

  25. Casolari JM, Brown CR, Drubin DA et al (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19:1188–1198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Kuroda M, Tanabe H, Yoshida K et al (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903

    Article  PubMed  CAS  Google Scholar 

  27. Panning MM, Gilbert DM (2005) Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J Cell Biochem 95:74–82

    Article  PubMed  CAS  Google Scholar 

  28. Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mehta IS, Kulashreshtha M, Chakraborty S et al (2013) Chromosome territories reposition during DNA damage-repair response. Genome Biol 14:R135

    Article  PubMed  PubMed Central  Google Scholar 

  30. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–386

    Article  PubMed  CAS  Google Scholar 

  31. Mehta I, Chakraborty S, Rao BJ (2013) IMACULAT – an open access package for the quantitative analysis of chromosome localization in the nucleus. PLoS One 8:e61386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Mehta IS, Amira M, Harvey AJ et al (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:R5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bridger JM, Herrmann H, Munkel C et al (1998) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111:1241–1253

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chakraborty, S., Mehta, I., Kulashreshtha, M., Rao, B.J. (2015). Quantitative Analysis of Chromosome Localization in the Nucleus. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics