Skip to main content

Four-Point Bending Protocols to Study the Effects of Dynamic Strain in Osteoblastic Cells In Vitro

  • Protocol
  • First Online:
Osteoporosis and Osteoarthritis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1226))

Abstract

Strain engendered within bone tissue by mechanical loading of the skeleton is a major influence on the processes of bone modeling and remodeling and so a critical determinant of bone mass and architecture. The cells best placed to respond to strain in bone tissue are the resident osteocytes and osteoblasts. To address the mechanisms of strain-related responses in osteoblast-like cells, our group uses both in vivo and in vitro approaches, including a system of four-point bending of the substrate on which cells are cultured. A range of cell lines can be studied using this system but we routinely compare their responses to those in primary cultures of osteoblast-like cells derived from explants of mouse long bones. These cells show a range of well-characterized responses to physiological levels of strain, including increased proliferation, which in vivo is a feature of the osteogenic response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275:1081–1101

    Article  PubMed  Google Scholar 

  3. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  CAS  PubMed  Google Scholar 

  4. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    CAS  PubMed  Google Scholar 

  5. Turner CH, Akhter MP, Raab DM et al (1991) A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12:73–79

    Article  CAS  PubMed  Google Scholar 

  6. Chambers TJ, Evans M, Gardner TN et al (1993) Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner 20:167–178

    Article  CAS  PubMed  Google Scholar 

  7. Lee KC, Maxwell A, Lanyon LE (2002) Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone 31:407–412

    Article  CAS  PubMed  Google Scholar 

  8. Lee K, Jessop H, Suswillo R et al (2003) Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 424(6947):389

    Article  CAS  PubMed  Google Scholar 

  9. Sawakami K, Robling AG, Ai M et al (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 18: 23698–23711

    Article  Google Scholar 

  10. Trussel A, Muller R, Webster D et al (2012) Toward mechanical systems biology in bone. Ann Biomed Eng 40:2475–2487

    Article  PubMed  Google Scholar 

  11. Moustafa A, Sugiyama T, Prasad J et al (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23:1225–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Zaman G, Cheng MZ, Jessop HL et al (2000) Mechanical strain activates estrogen response elements in bone cells. Bone 27:233–239

    Article  CAS  PubMed  Google Scholar 

  13. Javaheri B, Sunters A, Zaman G et al (2012) Lrp5 is not required for the proliferative response of osteoblasts to strain but regulates proliferation and apoptosis in a cell autonomous manner. PLoS One 7:e35726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Xu T, Yang K, You H et al (2013) Regulation of PTHrP expression by cyclic mechanical strain in postnatal growth plate chondrocytes. Bone 56:304–311

    Article  CAS  PubMed  Google Scholar 

  15. Cai X, Zhang Y, Yang X et al (2011) Uniaxial cyclic tensile stretch inhibits osteogenic and odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med 5: 347–353

    Article  CAS  PubMed  Google Scholar 

  16. Aguirre JI, Plotkin LI, Gortazar AR et al (2007) A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282:25501–25508

    Article  CAS  PubMed  Google Scholar 

  17. Sen B, Xie Z, Case N et al (2008) Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable beta-catenin signal. Endocrinology 149:6065–6075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sen B, Styner M, Xie Z et al (2009) Mechanical loading regulates NFATc1 and beta-catenin signaling through a GSK3beta control node. J Biol Chem 284:34607–34617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Case N, Ma MY, Sen B et al (2008) Beta-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283: 29196–29205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jessop HL, Rawlinson SC, Pitsillides AA et al (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31:186–194

    Article  CAS  PubMed  Google Scholar 

  21. Kamel MA, Picconi JL, Lara-Castillo N et al (2010) Activation of beta-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: Implications for the study of mechanosensation in bone. Bone 47:872–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rath AL, Bonewald LF, Ling J et al (2010) Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. J Biomech 43:1560–1564

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zaman G, Pitsillides AA, Rawlinson SC et al (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14:1123–1131

    Article  CAS  PubMed  Google Scholar 

  24. Stern AR, Stern MM, Van Dyke ME et al (2012) Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. Biotechniques 52:361–373

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Kitase Y, Barragan L, Qing H et al (2010) Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res 25:2657–2668

    Article  PubMed Central  PubMed  Google Scholar 

  26. Genetos DC, Kephart CJ, Zhang Y et al (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cherian PP, Cheng B, Gu S et al (2003) Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278:43146–43156

    Article  CAS  PubMed  Google Scholar 

  28. Dodds RA, Ali N, Pead MJ et al (1993) Early loading-related changes in the activity of glucose 6-phosphate dehydrogenase and alkaline phosphatase in osteocytes and periosteal osteoblasts in rat fibulae in vivo. J Bone Miner Res 8:261–267

    Article  CAS  PubMed  Google Scholar 

  29. Skerry TM, Bitensky L, Chayen J et al (1989) Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 4:783–788

    Article  CAS  PubMed  Google Scholar 

  30. Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503:179–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Price JS, Sugiyama T, Galea GL et al (2011) Role of endocrine and paracrine factors in the adaptation of bone to mechanical loading. Curr Osteoporos Rep 9:76–82

    Article  PubMed  Google Scholar 

  32. Cheng M, Zaman G, Rawlinson SC et al (1999) Mechanical strain stimulates ROS cell proliferation through IGF-II and estrogen through IGF-I. J Bone Miner Res 14:1742–1750

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong VJ, Muzylak M, Sunters A et al (2007) Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha. J Biol Chem 282:20715–20727

    Article  CAS  PubMed  Google Scholar 

  34. Sunters A, Armstrong VJ, Zaman G et al (2010) Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem 285:8743–8758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zaman G, Sunters A, Galea GL et al (2012) Loading-related regulation of the transcription factor EGR2/Krox-20 in bone cells is ERK 1/2 mediated and prostaglandin Wnt and IGF-I axis dependent. J Biol Chem 287:3946–3962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zaman G, Saxon LK, Sunters A et al (2010) Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor alpha and disuse. Bone 46:628–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Galea GL, Sunters A, Meakin LB et al (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585:2450–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Galea GL, Meakin LB, Sugiyama T et al (2013) Estrogen receptor alpha mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down regulation of the Wnt antagonist Sost is mediated by Estrogen Receptor beta. J Biol Chem 288: 9035–9048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yu L, der Valk MV, Cao J et al (2011) Sclerostin expression is induced by BMPs in human Saos-2 osteosarcoma cells but not via direct effects on the sclerostin gene promoter or ECR5 element. Bone 49:1131–1140

    Article  CAS  PubMed  Google Scholar 

  40. Rawlinson SC, McKay IJ, Ghuman M et al (2009) Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS One 4:e8358

    Article  PubMed Central  PubMed  Google Scholar 

  41. Rawlinson SC, Mosley JR, Suswillo RF et al (1995) Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J Bone Miner Res 10:1225–1232

    Article  CAS  PubMed  Google Scholar 

  42. Zaman G, Suswillo RF, Cheng MZ et al (1997) Early responses to dynamic strain change and prostaglandins in bone-derived cells in culture. J Bone Miner Res 12:769–777

    Article  CAS  PubMed  Google Scholar 

  43. Windahl S, Saxon L, Borjesson A et al (2013) Estrogen receptor-alpha is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J Bone Miner Res 28:291–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Damien E, Price JS, Lanyon LE (2000) Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J Bone Miner Res 15: 2169–2177

    Article  CAS  PubMed  Google Scholar 

  45. Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 107: 321–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Much of the work described here was funded by the Wellcome Trust (to J.S.P.) and a Veterinary Intercalated Training Fellowship also from the Wellcome Trust (to G.L.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna S. Price Ph.D., M.R.C.V.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media. New York

About this protocol

Cite this protocol

Galea, G.L., Price, J.S. (2015). Four-Point Bending Protocols to Study the Effects of Dynamic Strain in Osteoblastic Cells In Vitro. In: Westendorf, J., van Wijnen, A. (eds) Osteoporosis and Osteoarthritis. Methods in Molecular Biology, vol 1226. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1619-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1619-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1618-4

  • Online ISBN: 978-1-4939-1619-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics