Skip to main content

Mast Cells in Human Health and Disease

  • Protocol
  • First Online:
Mast Cells

Abstract

Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in “tuning” the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu Z-Q, Zhao W-H, Shimamura T (2007) Regulation of mast cell development by inflammatory factors. Curr Med Chem 14: 3044–3050

    CAS  PubMed  Google Scholar 

  2. Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32: 478–485

    CAS  PubMed  Google Scholar 

  3. Iemura A, Tsai M, Ando A et al (1994) The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis. Am J Pathol 144:321–328

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Orinska Z, Föger N, Huber M et al (2010) I787 provides signals for c-Kit receptor internalization and functionality that control mast cell survival and development. Blood 116:2665–2675

    CAS  PubMed  Google Scholar 

  5. Abraham SN, John ALS (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    CAS  PubMed  Google Scholar 

  6. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Moon TC, St Laurent CD, Morris KE et al (2009) Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol 3:111–128

    PubMed  Google Scholar 

  8. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799

    CAS  PubMed  Google Scholar 

  9. Holgate ST, Hardy C, Robinson C et al (1986) The mast cell as a primary effector cell in the pathogenesis of asthma. J Allergy Clin Immunol 77:274–282

    CAS  PubMed  Google Scholar 

  10. Irani AA, Schechter NM, Craig SS et al (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A 83:4464–4468

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bax HJ, Keeble AH, Gould HJ (2012) Cytokinergic IgE action in mast cell activation. Front Immunol 3:229

    PubMed Central  PubMed  Google Scholar 

  12. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    CAS  PubMed  Google Scholar 

  13. Williams CMM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105:847–859

    CAS  PubMed  Google Scholar 

  14. Theoharides TC, Alysandratos K-D, Angelidou A et al (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659

    CAS  PubMed  Google Scholar 

  16. Skokos D, Botros HG, Demeure C et al (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045

    CAS  PubMed  Google Scholar 

  17. Pulimood AB, Mathan MM, Mathan VI (1998) Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Dig Dis Sci 43:2111–2116

    CAS  PubMed  Google Scholar 

  18. Matsuo T, Ikura Y, Ohsawa M et al (2003) Mast cell chymase expression in Helicobacter pylori-associated gastritis. Histopathology 43: 538–549

    CAS  PubMed  Google Scholar 

  19. Raqib R, Moly PK, Sarker P et al (2003) Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect Immun 71:2684–2692

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Qadri F, Bhuiyan TR, Dutta KK et al (2004) Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut 53:62–69

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    CAS  PubMed  Google Scholar 

  22. Ha TY, Reed ND, Crowle PK (1983) Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect Immun 41: 445–447

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Alizadeh H, Murrell KD (1984) The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/wv mice. J Parasitol 70:767

    CAS  PubMed  Google Scholar 

  24. Knight PA, Wright SH, Lawrence CE et al (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 192:1849–1856

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lawrence CE, Paterson YYW, Wright SH et al (2004) Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127:155–165

    CAS  PubMed  Google Scholar 

  26. Woodbury RG, Miller HRP, Huntley JF et al (1984) Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature 312: 450–452

    CAS  PubMed  Google Scholar 

  27. Urban JF, Katona IM, Paul WE et al (1991) Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci U S A 88: 5513–5517

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Finkelman FD, Shea-Donohue T, Morris SC et al (2004) Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev 201:139–155

    CAS  PubMed  Google Scholar 

  29. McDermott JR, Bartram RE, Knight PA et al (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci U S A 100:7761–7766

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52: 447–452

    CAS  PubMed  Google Scholar 

  31. Maurer M, Kostka SL, Siebenhaar F et al (2006) Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 20:2460–2467

    CAS  PubMed  Google Scholar 

  32. Dudeck A, Suender CA, Kostka SL et al (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893

    CAS  PubMed  Google Scholar 

  33. Urban BC, Cordery D, Shafi MJ et al (2006) The frequency of BDCA3-positive dendritic cells is increased in the peripheral circulation of Kenyan children with severe malaria. Infect Immun 74:6700–6706

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735

    CAS  PubMed  Google Scholar 

  35. Guermonprez P, Helft J, Claser C et al (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19: 730–738

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Echtenacher B, Männel DN, Hültner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77

    CAS  PubMed  Google Scholar 

  37. Lin T-J, Garduno R, Boudreau RTM et al (2002) Pseudomonas aeruginosa activates human mast cells to induce neutrophil transendothelial migration via mast cell-derived IL-1α and β. J Immunol 169:4522–4530

    CAS  PubMed  Google Scholar 

  38. Malaviya R, Ikeda T, Ross E et al (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381:77–80

    CAS  PubMed  Google Scholar 

  39. Malaviya R, Abraham SN (2000) Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol 67:841–846

    CAS  PubMed  Google Scholar 

  40. Huang C, Friend DS, Qiu W-T et al (1998) Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by tryptase mouse mast cell protease 6. J Immunol 160:1910–1919

    CAS  PubMed  Google Scholar 

  41. Tani K, Ogushi F, Kido H et al (2000) Chymase is a potent chemoattractant for human monocytes and neutrophils. J Leukoc Biol 67: 585–589

    CAS  PubMed  Google Scholar 

  42. Huang C, Sanctis GTD, O’Brien PJ et al (2001) Evaluation of the substrate specificity of human mast cell tryptase βI and demonstration of its importance in bacterial infections of the lung. J Biol Chem 276:26276–26284

    CAS  PubMed  Google Scholar 

  43. Nardo AD, Vitiello A, Gallo RL (2003) Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 170:2274–2278

    PubMed  Google Scholar 

  44. Abel J, Goldmann O, Ziegler C et al (2011) Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake. J Innate Immun 3:495–507

    CAS  PubMed  Google Scholar 

  45. Liu F-T, Goodarzi H, Chen H-Y (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 41:298–310

    CAS  PubMed  Google Scholar 

  46. Muñoz S, Rivas-Santiago B, Enciso JA (2009) Mycobacterium tuberculosis entry into mast cells through cholesterol-rich membrane microdomains. Scand J Immunol 70:256–263

    PubMed  Google Scholar 

  47. Mañes S, del Real G, Martínez-A C (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568

    PubMed  Google Scholar 

  48. Dawicki W, Jawdat DW, Xu N et al (2010) Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol 184: 2116–2123

    CAS  PubMed  Google Scholar 

  49. Gauchat J-F, Henchoz S, Mazzei G et al (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365: 340–343

    CAS  PubMed  Google Scholar 

  50. John ALS, Rathore APS, Yap H et al (2011) Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci U S A 108: 9190–9195

    Google Scholar 

  51. Brown MG, McAlpine SM, Huang YY et al (2012) RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection. PLoS One 7:e34055

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dietrich N, Rohde M, Geffers R et al (2010) Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria. Proc Natl Acad Sci U S A 107: 8748–8753

    CAS  PubMed Central  PubMed  Google Scholar 

  53. John ALS, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol 190:4458–4463

    Google Scholar 

  54. Sundstrom JB, Ellis JE, Hair GA et al (2007) Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood 109: 5293–5300

    CAS  PubMed  Google Scholar 

  55. Kasturiratne A, Wickremasinghe AR, de Silva N et al (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5:e218

    PubMed Central  PubMed  Google Scholar 

  56. Biló BM, Rueff F, Mosbech H et al (2005) Diagnosis of Hymenoptera venom allergy. Allergy 60:1339–1349

    PubMed  Google Scholar 

  57. Rueff F, Dugas-Breit S, Przybilla B (2009) Stinging Hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 9:338–342

    PubMed  Google Scholar 

  58. Bonadonna P, Zanotti R, Müller U (2010) Mastocytosis and insect venom allergy. Curr Opin Allergy Clin Immunol 10:347–353

    CAS  PubMed  Google Scholar 

  59. Casewell NR, Wüster W, Vonk FJ et al (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229

    PubMed  Google Scholar 

  60. Brown TC, Tankersley MS (2011) The sting of the honeybee: an allergic perspective. Ann Allergy Asthma Immunol 107:463–470

    CAS  PubMed  Google Scholar 

  61. Metz M, Piliponsky AM, Chen C-C et al (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313: 526–530

    CAS  PubMed  Google Scholar 

  62. Akahoshi M, Song CH, Piliponsky AM et al (2011) Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. J Clin Invest 121:4180–4191

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Maurer M, Wedemeyer J, Metz M et al (2004) Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432: 512–516

    CAS  PubMed  Google Scholar 

  64. Caughey GH (2011) Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol 716:212–234

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Siddiqui S, Mistry V, Doe C et al (2008) Airway hyperresponsiveness is dissociated from airway wall structural remodeling. J Allergy Clin Immunol 122:335.e3–341.e3

    Google Scholar 

  66. Carroll NG, Mutavdzic S, James AL (2002) Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J 19:879–885

    CAS  PubMed  Google Scholar 

  67. Leckie MJ, ten Brinke A, Khan J et al (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsìveness, and the late asthmatic response. Lancet 356:2144–2148

    CAS  PubMed  Google Scholar 

  68. Nair P, Pizzichini MMM, Kjarsgaard M et al (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360:985–993

    CAS  PubMed  Google Scholar 

  69. Crimi E, Chiaramondia M, Milanese M et al (1991) Increased numbers of mast cells in bronchial mucosa after the late-phase asthmatic response to allergen. Am Rev Respir Dis 144:1282–1286

    CAS  PubMed  Google Scholar 

  70. Busse W, Corren J, Lanier BQ et al (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 108:184–190

    CAS  PubMed  Google Scholar 

  71. Holgate ST, Djukanović R, Casale T et al (2005) Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin Exp Allergy 35:408–416

    CAS  PubMed  Google Scholar 

  72. Krishna MT, Chauhan A, Little L et al (2001) Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol 107:1039–1045

    CAS  PubMed  Google Scholar 

  73. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104

    CAS  PubMed  Google Scholar 

  74. Rock JR, Randell SH, Hogan BLM (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Becker M, Reuter S, Friedrich P et al (2011) Genetic variation determines mast cell functions in experimental asthma. J Immunol 186: 7225–7231

    CAS  PubMed  Google Scholar 

  76. Grimbaldeston MA, Chen C-C, Piliponsky AM et al (2005) Mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Nakae S, Ho LH, Yu M et al (2007) Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. J Allergy Clin Immunol 120:48–55

    CAS  PubMed  Google Scholar 

  78. Rodewald H-R, Feyerabend TB (2012) Widespread immunological functions of mast cells: fact or fiction? Immunity 37:13–24

    CAS  PubMed  Google Scholar 

  79. Baumgart DC, Carding SR (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369:1627–1640

    CAS  PubMed  Google Scholar 

  80. Baumgart DC, Sandborn WJ (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–1657

    CAS  PubMed  Google Scholar 

  81. Farhadi A, Fields J-Z, Keshavarzian A (2007) Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: stress, intestinal hyperpermeability and inflammation. World J Gastroenterol 13: 3027–3030

    PubMed Central  PubMed  Google Scholar 

  82. Matricon J, Meleine M, Gelot A et al (2012) Review article: associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment Pharmacol Ther 36:1009–1031

    CAS  PubMed  Google Scholar 

  83. Nolte H, Spjeldnaes N, Kruse A et al (1990) Histamine release from gut mast cells from patients with inflammatory bowel diseases. Gut 31:791–794

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lilja I, Gustafson-Svärd C, Franzén L et al (2000) Tumor necrosis factor-alpha in ileal mast cells in patients with Crohn’s disease. Digestion 61:68–76

    CAS  PubMed  Google Scholar 

  85. Stoyanova II, Gulubova MV (2002) Mast cells and inflammatory mediators in chronic ulcerative colitis. Acta Histochem 104:185–192

    CAS  PubMed  Google Scholar 

  86. Hodges K, Kennedy L, Meng F et al (2012) Mast cells, disease and gastrointestinal cancer: a comprehensive review of recent findings. Transl Gastrointest Cancer 1:138–150

    PubMed Central  PubMed  Google Scholar 

  87. Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 11(9):1075–1083

    PubMed Central  PubMed  Google Scholar 

  88. Stead RH, Dixon MF, Bramwell NH et al (1989) Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 97:575–585

    CAS  PubMed  Google Scholar 

  89. Wood JD (2004) Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 127:635–657

    CAS  PubMed  Google Scholar 

  90. Kurashima Y, Amiya T, Nochi T et al (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    PubMed Central  PubMed  Google Scholar 

  91. Konturek PC, Brzozowski T, Konturek SJ (2011) Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol 62: 591–599

    CAS  PubMed  Google Scholar 

  92. Farhadi A, Keshavarzian A, Van de Kar LD et al (2005) Heightened responses to stressors in patients with inflammatory bowel disease. Am J Gastroenterol 100:1796–1804

    PubMed  Google Scholar 

  93. Valatas V, Vakas M, Kolios G (2013) The value of experimental models of colitis in predicting efficacy of biologic therapies for inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 305:G763–G785

    CAS  PubMed  Google Scholar 

  94. Middel P, Reich K, Polzien F et al (2001) Interleukin 16 expression and phenotype of interleukin 16 producing cells in Crohn’s disease. Gut 49:795–803

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Barrett KE, Tashof TL, Metcalfe DD (1985) Inhibition of IgE-mediated mast cell degranulation by sulphasalazine. Eur J Pharmacol 107:279–281

    CAS  PubMed  Google Scholar 

  96. De Winter BY, van den Wijngaard RM, de Jonge WJ (2012) Intestinal mast cells in gut inflammation and motility disturbances. Biochim Biophys Acta 1822:66–73

    PubMed  Google Scholar 

  97. Barbara G, Stanghellini V, De Giorgio R et al (2006) Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil 18:6–17

    CAS  PubMed  Google Scholar 

  98. Stefanini GF, Prati E, Albini MC et al (1992) Oral disodium cromoglycate treatment on irritable bowel syndrome: an open study on 101 subjects with diarrheic type. Am J Gastroenterol 87:55–57

    CAS  PubMed  Google Scholar 

  99. Matter SE, Bhatia PS, Miner PB Jr (1990) Evaluation of antral mast cells in nonulcer dyspepsia. Dig Dis Sci 35:1358–1363

    CAS  PubMed  Google Scholar 

  100. Clouse RE, Lustman PJ, Geisman RA et al (1994) Antidepressant therapy in 138 patients with irritable bowel syndrome: a five-year clinical experience. Aliment Pharmacol Ther 8:409–416

    CAS  PubMed  Google Scholar 

  101. Kaartinen M, Penttilä A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90:1669–1678

    CAS  PubMed  Google Scholar 

  102. Tsunemi K, Takai S, Nishimoto M et al (2002) Possible roles of angiotensin II-forming enzymes, angiotensin converting enzyme and chymase-like enzyme, in the human aneurysmal aorta. Hypertens Res 25:817–822

    CAS  PubMed  Google Scholar 

  103. Kovanen PT (2007) Mast cells: multipotent local effector cells in atherothrombosis. Immunol Rev 217:105–122

    CAS  PubMed  Google Scholar 

  104. Lindstedt KA, Mäyränpää MI, Kovanen PT (2007) Mast cells in vulnerable atherosclerotic plaques—a view to a kill. J Cell Mol Med 11:739–758

    CAS  PubMed  Google Scholar 

  105. Bot I, Biessen EAL (2011) Mast cells in atherosclerosis. Thromb Haemost 106: 820–826

    CAS  PubMed  Google Scholar 

  106. Xu J-M, Shi G-P (2012) Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 33:71–108

    PubMed Central  PubMed  Google Scholar 

  107. Swedenborg J, Mäyränpää MI, Kovanen PT (2011) Mast cells important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 31:734–740

    CAS  PubMed  Google Scholar 

  108. Levick SP, Meléndez GC, Plante E et al (2011) Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 89:12–19

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Bot I, van Berkel TJ, Biessen EA (2008) Mast cells: pivotal players in cardiovascular diseases. Curr Cardiol Rev 4:170–178

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Cairns A, Constantinides P (1954) Mast cells in human atherosclerosis. Science 120:31–32

    CAS  PubMed  Google Scholar 

  112. Jeziorska M, McCollum C, Woolley DE (1997) Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol 182:115–122

    CAS  PubMed  Google Scholar 

  113. Kovanen PT (1996) Mast cells in human fatty streaks and atheromas: implications for intimal lipid accumulation. Curr Opin Lipidol 7:281–286

    CAS  PubMed  Google Scholar 

  114. Kaartinen M, Penttilä A, Kovanen PT (1996) Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis 123:123–131

    CAS  PubMed  Google Scholar 

  115. Willems S, Vink A, Bot I et al (2013) Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur Heart J 34(48): 3699–3706

    CAS  PubMed  Google Scholar 

  116. Lappalainen H, Laine P, Pentikäinen MO et al (2004) Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator. Arterioscler Thromb Vasc Biol 24:1880–1885

    CAS  PubMed  Google Scholar 

  117. Mäyränpää MI, Trosien JA, Fontaine V et al (2009) Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J Vasc Surg 50:388–395

    PubMed  Google Scholar 

  118. Tsuruda T, Kato J, Hatakeyama K et al (2008) Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm. Circ Res 102:1368–1377

    CAS  PubMed  Google Scholar 

  119. Anvari MS, Boroumand MA, Mojarad EA et al (2012) Do adventitial mast cells contribute to the pathogenesis of ascending thoracic aorta aneurysm? Int J Surg Pathol 20:474–479

    PubMed  Google Scholar 

  120. Pejler G, Ronnberg E, Waern I et al (2010) Mast cell proteases: multifaceted regulators of inflammatory disease. Blood 115:4981–4990

    CAS  PubMed  Google Scholar 

  121. Furubayashi K, Takai S, Jin D et al (2008) Chymase activates promatrix metalloproteinase-9 in human abdominal aortic aneurysm. Clin Chim Acta 388:214–216

    CAS  PubMed  Google Scholar 

  122. Shi G-P, Sukhova GK, Grubb A et al (1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 104: 1191–1197

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Lv B-J, Lindholt JS, Wang J et al (2013) Plasma levels of cathepsins L, K, and V and risks of abdominal aortic aneurysms: a randomized population-based study. Atherosclerosis 230:100–105

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Choke E, Thompson MM, Dawson J et al (2006) Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler Thromb Vasc Biol 26:2077–2082

    CAS  PubMed  Google Scholar 

  125. Mayraanpaa MI, Heikkila HM, Lindstedt KA et al (2006) Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coron Artery Dis 17:611–621

    Google Scholar 

  126. Patella V, de Crescenzo G, Lamparter-Schummert B et al (1997) Increased cardiac mast cell density and mediator release in patients with dilated cardiomyopathy. Inflamm Res 46:31–32

    Google Scholar 

  127. Patella V, Marinò I, Arbustini E et al (1998) Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation 97:971–978

    CAS  PubMed  Google Scholar 

  128. Ibrahim M, Terracciano C, Yacoub MH (2012) Can bridge to recovery help to reveal the secrets of the failing heart? Curr Cardiol Rep 14:392–396

    PubMed  Google Scholar 

  129. Akgul A, Skrabal CA, Thompson LO et al (2004) Role of mast cells and their mediators in failing myocardium under mechanical ventricular support. J Heart Lung Transplant 23:709–715

    PubMed  Google Scholar 

  130. Jahanyar J, Youker KA, Torre-Amione G et al (2008) Increased expression of stem cell factor and its receptor after left ventricular assist device support: a potential novel target for therapeutic interventions in heart failure. J Heart Lung Transplant 27:701–709

    PubMed  Google Scholar 

  131. Jahanyar J, Youker KA, Loebe M et al (2007) Mast cell-derived cathepsin G: a possible role in the adverse remodeling of the failing human heart. J Surg Res 140:199–203

    CAS  PubMed  Google Scholar 

  132. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Qin Y, Shi G-P (2011) Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther 131:338–350

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Krauth MT, Majlesi Y, Sonneck K et al (2006) Effects of various statins on cytokine-dependent growth and IgE-dependent release of histamine in human mast cells. Allergy 61:281–288

    CAS  PubMed  Google Scholar 

  135. Clejan S, Japa S, Clemetson C et al (2002) Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J Cell Mol Med 6:583–592

    CAS  PubMed  Google Scholar 

  136. Kim J, Ogai A, Nakatani S et al (2006) Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol 48:1378–1384

    CAS  PubMed  Google Scholar 

  137. Korkmaz ME, Oto A, Saraclar Y et al (1991) Levels of IgE in the serum of patients with coronary arterial disease. Int J Cardiol 31: 199–204

    CAS  PubMed  Google Scholar 

  138. Upadhya B, Kontos JL, Ardeshirpour F et al (2004) Relation of serum levels of mast cell tryptase of left ventricular systolic function, left ventricular volume or congestive heart failure. J Card Fail 10:31–35

    CAS  PubMed  Google Scholar 

  139. Deliargyris EN, Upadhya B, Sane DC et al (2005) Mast cell tryptase: a new biomarker in patients with stable coronary artery disease. Atherosclerosis 178:381–386

    CAS  PubMed  Google Scholar 

  140. Xiang M, Sun J, Lin Y et al (2011) Usefulness of serum tryptase level as an independent biomarker for coronary plaque instability in a Chinese population. Atherosclerosis 215: 494–499

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Duda D, Lorenz W, Celik I (2002) Histamine release in mesenteric traction syndrome during abdominal aortic aneurysm surgery: prophylaxis with H1 and H2 antihistamines. Inflamm Res 51:495–499

    CAS  PubMed  Google Scholar 

  142. Longley BJ, Tyrrell L, Lu S-Z et al (1996) Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 12:312–314

    CAS  PubMed  Google Scholar 

  143. Valent P, Horny H-P, Escribano L et al (2001) Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 25:603–625

    CAS  PubMed  Google Scholar 

  144. Nagata H, Worobec AS, Oh CK et al (1995) Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci U S A 92:10560–10564

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Irani AA, Garriga MM, Metcalfe DD et al (1990) Mast cells in cutaneous mastocytosis: accumulation of the MCTC type. Clin Exp Allergy 20:53–58

    CAS  PubMed  Google Scholar 

  146. Schwartz LB (2006) Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am 26: 451–463

    PubMed  Google Scholar 

  147. Compton SJ, Cairns JA, Holgate ST et al (2000) Human mast cell tryptase stimulates the release of an IL-8-dependent neutrophil chemotactic activity from human umbilical vein endothelial cells (HUVEC). Clin Exp Immunol 121:31–36

    CAS  PubMed Central  PubMed  Google Scholar 

  148. He S, Gaça MDA, Walls AF (1998) A role for tryptase in the activation of human mast cells: modulation of histamine release by tryptase and inhibitors of tryptase. J Pharmacol Exp Ther 286:289–297

    CAS  PubMed  Google Scholar 

  149. Pardanani A (2013) Systemic mastocytosis in adults: 2013 update on diagnosis, risk stratification, and management. Am J Hematol 88: 612–624

    CAS  PubMed  Google Scholar 

  150. Pardanani A (2013) How I treat patients with indolent and smoldering mastocytosis (rare conditions but difficult to manage). Blood 121:3085–3094

    CAS  PubMed  Google Scholar 

  151. Horan RF, Sheffer AL, Austen KF (1990) Cromolyn sodium in the management of systemic mastocytosis. J Allergy Clin Immunol 85:852–855

    CAS  PubMed  Google Scholar 

  152. Edwards AM, Capková S (2011) Oral and topical sodium cromoglicate in the treatment of diffuse cutaneous mastocytosis in an infant. BMJ Case Rep: bcr0220113910

    Google Scholar 

  153. Siebenhaar F, Förtsch A, Krause K et al (2013) Rupatadine improves quality of life in mastocytosis: a randomized, double-blind, placebo-controlled trial. Allergy 68(7):949–952

    CAS  PubMed  Google Scholar 

  154. Paraskevopoulos G, Sifnaios E, Christodoulopoulos K et al (2013) Successful treatment of mastocytic anaphylactic episodes with reduction of skin mast cells after anti-IgE therapy. Eur Ann Allergy Clin Immunol 45:52–55

    CAS  PubMed  Google Scholar 

  155. Gleixner KV, Mayerhofer M, Aichberger KJ et al (2006) PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects. Blood 107:752–759

    CAS  PubMed  Google Scholar 

  156. Gleixner KV, Mayerhofer M, Cerny-Reiterer S et al (2011) KIT-D816V-independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib. Blood 118:1885–1898

    CAS  PubMed  Google Scholar 

  157. Agarwala MK, George R, Mathews V et al (2013) Role of imatinib in the treatment of pediatric onset indolent systemic mastocytosis: a case report. J Dermatolog Treat 24: 481–483

    PubMed  Google Scholar 

  158. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    CAS  PubMed  Google Scholar 

  159. Westphal E, Ehrlich P (1891) Über Mastzellen. Histologie und Klinik des Plutes: gesammelte Mitt (h) eilungen, Ehrlich P.. Farbenanalytische Untersuchungen. Hirschwald Press, Berlin, pp 17–21

    Google Scholar 

  160. Theoharides TC, Conti P (2004) Mast cells: the JEKYLL and HYDE of tumor growth. Trends Immunol 25:235–241

    CAS  PubMed  Google Scholar 

  161. Zhang W, Stoica G, Tasca SI et al (2000) Modulation of tumor angiogenesis by stem cell factor. Cancer Res 60:6757–6762

    CAS  PubMed  Google Scholar 

  162. Conti P, Castellani ML, Kempuraj D et al (2007) Role of mast cells in tumor growth. Ann Clin Lab Sci 37:315–322

    CAS  PubMed  Google Scholar 

  163. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Aaltomaa S, Lipponen P, Papinaho S et al (1993) Mast cells in breast cancer. Anticancer Res 13:785–788

    CAS  PubMed  Google Scholar 

  165. Dabiri S, Huntsman D, Makretsov N et al (2004) The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod Pathol 17: 690–695

    PubMed  Google Scholar 

  166. Ribatti D, Finato N, Crivellato E et al (2007) Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology 51:837–842

    CAS  PubMed  Google Scholar 

  167. Ranieri G (2009) Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol 35:115–120

    PubMed  Google Scholar 

  168. Rajput AB, Turbin DA, Cheang MC et al (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 107:249–257

    PubMed Central  PubMed  Google Scholar 

  169. Amini R-M, Aaltonen K, Nevanlinna H et al (2007) Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer 7:165

    PubMed Central  PubMed  Google Scholar 

  170. Mangia A, Malfettone A, Rossi R et al (2011) Tissue remodelling in breast cancer: human mast cell tryptase as an initiator of myofibroblast differentiation. Histopathology 58: 1096–1106

    PubMed  Google Scholar 

  171. Strouch MJ, Cheon EC, Salabat MR et al (2010) Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16: 2257–2265

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Cai S-W, Yang S-Z, Gao J et al (2011) Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery 149:576–584

    PubMed  Google Scholar 

  173. Chang DZ, Ma Y, Ji B et al (2011) Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin Cancer Res 17:7015–7023

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Esposito I, Menicagli M, Funel N et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57: 630–636

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Nonomura N, Takayama H, Nishimura K et al (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97:952–956

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Fleischmann A, Schlomm T, Köllermann J et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69:976–981

    CAS  PubMed  Google Scholar 

  177. Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    CAS  PubMed  Google Scholar 

  178. Pittoni P, Colombo MP (2012) The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res 72:831–835

    CAS  PubMed  Google Scholar 

  179. Frenzel L, Hermine O (2013) Mast cells and inflammation. Joint Bone Spine 80:141–145

    CAS  PubMed  Google Scholar 

  180. Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822:57–65

    CAS  PubMed  Google Scholar 

  181. de Vries VC, Noelle RJ (2010) Mast cell mediators in tolerance. Curr Opin Immunol 22:643–648

    PubMed  Google Scholar 

  182. Neumann J (1890) Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veränderungen des Gehirns. Virchows Arch Pathol Anat Physiol Klin Med 122:378–380

    Google Scholar 

  183. (1963) XVI. Mast cell under pathologic conditions. Ann N Y Acad Sci 103:344–354

    Google Scholar 

  184. Ibrahim MZM, Reder AT, Lawand R et al (1996) The mast cells of the multiple sclerosis brain. J Neuroimmunol 70:131–138

    CAS  PubMed  Google Scholar 

  185. Krüger PG (2001) Mast cells and multiple sclerosis: a quantitative analysis. Neuropathol Appl Neurobiol 27:275–280

    PubMed  Google Scholar 

  186. Zappulla JP, Arock M, Mars LT et al (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131:5–20

    CAS  PubMed  Google Scholar 

  187. Couturier N, Zappulla JP, Lauwers-Cances V et al (2008) Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol 195:176–185

    CAS  PubMed  Google Scholar 

  188. Karagkouni A, Alevizos M, Theoharides TC (2013) Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 12: 947–953

    CAS  PubMed  Google Scholar 

  189. Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there controversy? Front Immunol 3:147

    PubMed Central  PubMed  Google Scholar 

  190. Brown MA, Hatfield JK, Walker ME et al (2012) A game of kit and mouse: the kit is still in the bag. Immunity 36:891–892

    CAS  PubMed  Google Scholar 

  191. Feyerabend TB, Weiser A, Tietz A et al (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35: 832–844

    CAS  PubMed  Google Scholar 

  192. Rodewald H-R (2012) Response to Brown et al. Immunity 36:893–894

    CAS  Google Scholar 

  193. Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186:3294–3298

    CAS  PubMed  Google Scholar 

  194. Secor VH, Secor WE, Gutekunst C-A et al (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191:813–822

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Bennett JL, Blanchet M-R, Zhao L et al (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182:5507–5514

    CAS  PubMed  Google Scholar 

  196. Michel A, Schuler A, Friedrich P et al (2013) Mast cell-deficient KitW-sh “Sash” mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells. J Immunol 190:5534–5544

    CAS  PubMed  Google Scholar 

  197. Piconese S, Costanza M, Musio S et al (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient KitW-sh/W-sh mice. Lab Invest 91:627–641

    CAS  PubMed  Google Scholar 

  198. Li H, Nourbakhsh B, Safavi F et al (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 187:274–282

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Nigrovic PA, Lee DM (2007) Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 217:19–37

    CAS  PubMed  Google Scholar 

  200. Noordenbos T, Yeremenko N, Gofita I et al (2012) Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 64:99–109

    CAS  PubMed  Google Scholar 

  201. Eklund KK (2007) Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 217:38–52

    CAS  PubMed  Google Scholar 

  202. Kenna TJ, Brown MA (2012) The role of IL-17-secreting mast cells in inflammatory joint disease. Nat Rev Rheumatol 9:375–379

    PubMed  Google Scholar 

  203. Sandler C, Lindstedt KA, Joutsiniemi S et al (2007) Selective activation of mast cells in rheumatoid synovial tissue results in production of TNF-α, IL-1β and IL-1Ra. Inflamm Res 56:230–239

    CAS  PubMed  Google Scholar 

  204. Hueber AJ, Asquith DL, Miller AM et al (2010) Cutting edge: mast cells express IL-17A in rheumatoid arthritis synovium. J Immunol 184:3336–3340

    CAS  PubMed  Google Scholar 

  205. Lee DM, Friend DS, Gurish MF et al (2002) Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297:1689–1692

    CAS  PubMed  Google Scholar 

  206. Nigrovic PA, Malbec O, Lu B et al (2010) C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcγ receptor modulation. Arthritis Rheum 62:3322–3333

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Nigrovic PA, Binstadt BA, Monach PA et al (2007) Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proc Natl Acad Sci U S A 104:2325–2330

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Zhou JS, Xing W, Friend DS et al (2007) Mast cell deficiency in KitW-sh mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Holdsworth SR, Summers SA (2008) Role of mast cells in progressive renal diseases. J Am Soc Nephrol 19:2254–2261

    CAS  PubMed  Google Scholar 

  210. Tóth T, Tóth-Jakatics R, Jimi S et al (1999) Mast cells in rapidly progressive glomerulonephritis. J Am Soc Nephrol 10:1498–1505

    PubMed  Google Scholar 

  211. Yamada M, Ueda M, Naruko T et al (2001) Mast cell chymase expression and mast cell phenotypes in human rejected kidneys. Kidney Int 59:1374–1381

    CAS  PubMed  Google Scholar 

  212. Company C, Piqueras L, Naim Abu Nabah Y et al (2011) Contributions of ACE and mast cell chymase to endogenous angiotensin II generation and leucocyte recruitment in vivo. Cardiovasc Res 92:48–56

    CAS  PubMed  Google Scholar 

  213. Wasse H, Naqvi N, Husain A (2012) Impact of mast cell chymase on renal disease progression. Curr Hypertens Rev 8:15–23

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Gan P-Y, Summers SA, Ooi JD et al (2012) Mast cells contribute to peripheral tolerance and attenuate autoimmune vasculitis. J Am Soc Nephrol 23:1955–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Scandiuzzi L, Beghdadi W, Daugas E et al (2010) Mouse mast cell protease-4 deteriorates renal function by contributing to inflammation and fibrosis in immune complex-mediated glomerulonephritis. J Immunol 185:624–633

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Jahanyar J, Koerner MM, Loebe M et al (2008) The role of mast cells after solid organ transplantation. Transplantation 85:1365–1371

    PubMed  Google Scholar 

  217. Ishida T, Hyodo Y, Ishimura T et al (2005) Mast cell numbers and protease expression patterns in biopsy specimens following renal transplantation from living-related donors predict long-term graft function. Clin Transplant 19:817–824

    PubMed  Google Scholar 

  218. Mengel M, Reeve J, Bunnag S et al (2009) Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant 9:169–178

    CAS  PubMed  Google Scholar 

  219. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    CAS  PubMed Central  PubMed  Google Scholar 

  220. de Vries VC, Pino-Lagos K, Nowak EC et al (2011) Mast cells condition dendritic cells to mediate allograft tolerance. Immunity 35: 550–561

    PubMed Central  PubMed  Google Scholar 

  221. de Vries VC, Wasiuk A, Bennett KA et al (2009) Mast cell degranulation breaks peripheral tolerance. Am J Transplant 9: 2270–2280

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hughes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

DeBruin, E.J. et al. (2015). Mast Cells in Human Health and Disease. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics