Skip to main content

Human Mast Cell and Basophil/Eosinophil Progenitors

  • Protocol
  • First Online:
Mast Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1220))

Abstract

Mast cell, basophil, and eosinophil lineages all derive from CD34+ hemopoietic stem cells; however, mast cells are derived from a distinct, nonmyeloid progenitor, while eosinophils and basophils share a common myeloid progenitor. These progenitors likely evolved from an ancestral leukocyte population involved in innate immunity and currently play a central role in the pathology of allergic disease. Advances in isolation and analysis of mast cell and basophil/eosinophil progenitor populations have been critical to understanding lineage commitment, differentiation, function, and transcriptional regulation of these cells and have provided a way of monitoring the effect of novel investigational therapies on these cell populations in samples of blood, bone marrow, and airway secretions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denburg JA et al (1985) Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 66:312–318

    CAS  PubMed  Google Scholar 

  2. Drew E et al (2005) CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 22:43–57

    Article  CAS  PubMed  Google Scholar 

  3. Drew E et al (2005) CD34 expression by mast cells: of mice and men. Blood 106:1885–1887

    Article  CAS  PubMed  Google Scholar 

  4. Chen CC et al (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci U S A 102:11408–11413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Selye H (1965) The mast cells. Butterworths, Washington, DC

    Google Scholar 

  6. Crivellato E, Nico B, Ribatti D (2011) The history of the controversial relationship between mast cells and basophils. Immunol Lett 141:10–17

    Article  CAS  PubMed  Google Scholar 

  7. Crivellato E, Ribatti D (2010) The mast cell: an evolutionary perspective. Biol Rev Camb Philos Soc 85:347–360

    Article  PubMed  Google Scholar 

  8. Siracusa MC et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Taylor BC et al (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206:655–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Reece P et al (2011) Maternal allergy modulates cord blood hematopoietic progenitor Toll-like receptor expression and function. J Allergy Clin Immunol 127:447–453

    Article  CAS  PubMed  Google Scholar 

  13. Nagai Y et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Soucek L et al (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

  16. Gounaris E et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci U S A 104:19977–19982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796:19–26

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee DM et al (2002) Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297:1689–1692

    Article  CAS  PubMed  Google Scholar 

  19. Secor VH et al (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191:813–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heissig B et al (2005) Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 202:739–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lu LF et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  22. Leslie M (2010) Immunology. Mouse studies challenge rare immune cell’s powers. Science 329:1595

    Article  CAS  PubMed  Google Scholar 

  23. Sokol CL, Medzhitov R (2010) Emerging functions of basophils in protective and allergic immune responses. Mucosal Immunol 3:129–137

    Article  CAS  PubMed  Google Scholar 

  24. Ohnmacht C et al (2010) Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33:364–374

    Article  CAS  PubMed  Google Scholar 

  25. Hammad H et al (2010) Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 207:2097–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gurish MF, Boyce JA (2006) Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. J Allergy Clin Immunol 117:1285–1291

    Article  CAS  PubMed  Google Scholar 

  27. Franco CB et al (2010) Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 6:361–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nakano T et al (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous intraperitoneal and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med 162:1025–1043

    Article  CAS  PubMed  Google Scholar 

  29. Kitamura Y, Ito A (2005) Mast cell-committed progenitors. Proc Natl Acad Sci U S A 102:11129–11130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Moon TC et al (2012) Microenvironmental regulation of inducible nitric oxide synthase expression and nitric oxide production in mouse bone marrow-derived mast cells. J Leukoc Biol 91:581–590

    Article  CAS  PubMed  Google Scholar 

  31. Denburg JA et al (1983) Basophil/mast cell precursors in human peripheral blood. Blood 61:775–780

    CAS  PubMed  Google Scholar 

  32. Denburg JA, van Eeden SF (2006) Bone marrow progenitors in inflammation and repair: new vistas in respiratory biology and pathophysiology. Eur Respir J 27:441–445

    Article  CAS  PubMed  Google Scholar 

  33. Gauvreau GM, Denburg JA (2005) Hemopoietic progenitors: the role of eosinophil/basophil progenitors in allergic airway inflammation. Expert Rev Clin Immunol 1:87–101

    Article  CAS  PubMed  Google Scholar 

  34. Gauvreau GM, Ellis AK, Denburg JA (2009) Haemopoietic processes in allergic disease: eosinophil/basophil development. Clin Exp Allergy 39:1297–1306

    Article  CAS  PubMed  Google Scholar 

  35. Rodewald HR et al (1996) Identification of a committed precursor for the mast cell lineage. Science 271:818–822

    Article  CAS  PubMed  Google Scholar 

  36. Buhring HJ et al (1999) The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 94:2343–2356

    CAS  PubMed  Google Scholar 

  37. Hill DA et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Leary AG, Ogawa M (1984) Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood 64:78–83

    CAS  PubMed  Google Scholar 

  39. Denburg JA, Silver JE, Abrams JS (1991) Interleukin-5 is a human basophilopoietin: induction of histamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophil-eosinophil progenitors. Blood 77:1462–1468

    CAS  PubMed  Google Scholar 

  40. Valent P et al (1989) Interleukin-3 is a differentiation factor for human basophils. Blood 73:1763–1769

    CAS  PubMed  Google Scholar 

  41. Hutt-Taylor SR et al (1988) Sodium butyrate and a T lymphocyte cell line-derived differentiation factor induce basophilic differentiation of the human promyelocytic leukemia cell line HL-60. Blood 71:209–215

    CAS  PubMed  Google Scholar 

  42. Denburg JA (1992) Basophil and mast cell lineages in vitro and in vivo. Blood 79:846–860

    CAS  PubMed  Google Scholar 

  43. Denburg JA, Wilson WEC, Bienenstock J (1982) Basophil production in myeloproliferative disorders: increases during acute blastic transformation of chronic myeloid leukemia. Blood 60:113–120

    CAS  PubMed  Google Scholar 

  44. Djukanovic R et al (1990) Mucosal inflammation in asthma. Am Rev Respir Dis 142:434–457

    Article  CAS  PubMed  Google Scholar 

  45. Gauvreau GM et al (2000) Increased numbers of both airway basophils and mast cells in sputum after allergen inhalation challenge of atopic asthmatics. Am J Respir Crit Care Med 161:1473–1478

    Article  CAS  PubMed  Google Scholar 

  46. Wood LJ et al (1999) An inhaled corticosteroid, budesonide, reduces baseline but not allergen-induced increases in bone marrow inflammatory cell progenitors in asthmatic subjects. Am J Respir Crit Care Med 159:1457–1463

    Article  CAS  PubMed  Google Scholar 

  47. Sehmi R et al (1997) Allergen-induced increases in IL-5 receptor α-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment toward eosinophilic differentiation. J Clin Invest 100:2466–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gauvreau GM et al (1998) Enhanced expression of GM-CSF in differentiating eosinophils of atopic and atopic asthmatic subjects. Am J Respir Cell Mol Biol 19:55–62

    Article  CAS  PubMed  Google Scholar 

  49. Dorman SC et al (2004) Sputum CD34+IL-5Rα+ cells increase after allergen: evidence for in situ eosinophilopoiesis. Am J Respir Crit Care Med 169:573–577

    Article  PubMed  Google Scholar 

  50. Gauvreau GM et al (2000) The effects of inhaled budesonide on circulating eosinophil progenitors and their expression of cytokines after allergen challenge in subjects with atopic asthma. Am J Respir Crit Care Med 162:2139–2144

    Article  CAS  PubMed  Google Scholar 

  51. Flood-Page P et al (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176:1062–1071

    Article  CAS  PubMed  Google Scholar 

  52. Imaoka H et al (2011) TPI ASM8 reduces eosinophil progenitors in sputum after allergen challenge. Clin Exp Allergy 41:1740–1746

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judah A. Denburg M.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gauvreau, G.M., Denburg, J.A. (2015). Human Mast Cell and Basophil/Eosinophil Progenitors. In: Hughes, M., McNagny, K. (eds) Mast Cells. Methods in Molecular Biology, vol 1220. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1568-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1568-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1567-5

  • Online ISBN: 978-1-4939-1568-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics