Skip to main content

Identification of Protein Scaffolds for Enzyme Design Using Scaffold Selection

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

The identification of suitable protein structures that can serve as scaffolds for the introduction of catalytic residues is crucial for the design of new enzymes. Here we describe how the automated and rapid scaffold search program ScaffoldSelection can be used to find the best starting points, namely protein structures that are most likely to tolerate the introduction and promote the proper formation of a specific catalytic motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pinto AL, Hellinga HW, Caradonna JP (1997) Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc Natl Acad Sci U S A 94:5562–5567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453: 190–195

    Article  PubMed  Google Scholar 

  4. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA et al (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15:2785–2794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Malisi C, Kohlbacher O, Höcker B (2009) Automated scaffold selection for enzyme design. Proteins 77:74–83

    Article  PubMed  CAS  Google Scholar 

  6. Hellinga HW, Richards FM (1991) Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J Mol Biol 222:763–785

    Article  PubMed  CAS  Google Scholar 

  7. Hearst DP, Cohen FE (1994) GRAFTER: a computational aid for the design of novel proteins. Protein Eng 7:1411–1421

    Article  PubMed  CAS  Google Scholar 

  8. Hornischer K, Blocker H (1996) Grafting of discontinuous sites: a protein modeling strategy. Protein Eng 9:931–939

    Article  PubMed  CAS  Google Scholar 

  9. Lei Y, Luo W, Zhu Y (2011) A matching algorithm for catalytic residue site selection in computational enzyme design. Protein Sci 20:1566–1575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Zhang C, Lai L (2012) AutoMatch: target-binding protein design and enzyme design by automatic pinpointing potential active sites in available protein scaffolds. Proteins 80: 1078–1094

    Article  PubMed  CAS  Google Scholar 

  11. Friedland GD, Linares AJ, Smith CA, Kortemme T (2008) A simple model of backbone flexibility improves modeling of side-chain conformational variability. J Mol Biol 380:757–774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Tantillo DJ, Chen J, Houk KN (1998) Theozymes and compuzymes: theoretical models for biological catalysis. Curr Opin Chem Biol 2:743–750

    Article  PubMed  CAS  Google Scholar 

  13. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  14. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kohlbacher O, Lenhof HP (2000) BALL—rapid software prototyping in computational molecular biology. Biochemicals Algorithms Library. Bioinformatics 16:815–824

    Article  PubMed  CAS  Google Scholar 

  16. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  PubMed  CAS  Google Scholar 

  17. Leaver-Fay A, Tyka M, Lewis SM et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Malisi C, Schumann M, Toussaint NC et al (2012) Binding pocket optimization by computational protein design. PLoS One 7(12): e52505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Höcker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Stiel, A.C., Feldmeier, K., Höcker, B. (2014). Identification of Protein Scaffolds for Enzyme Design Using Scaffold Selection. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics