Skip to main content

Computational Design of Novel Enzymes Without Cofactors

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

In this review we present a recently developed computational method to design de novo enzymes. Starting from the three-dimensional arrangement of the transition state structure and the catalytic side chains around it (theozyme), RosettaMatch identifies successful placements of the theozyme into protein scaffolds. Subsequently, RosettaEnzDes (for EnzymeDesign) redesigns the active site around the theozyme for binding and stabilization of the transition state and the catalytic residues. The resulting computationally designed enzymes are expressed and experimentally tested for catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althoff EA, Wang L, Jiang L, Giger L, Lassila JK, Wang Z et al (2012) Robust design and optimization of retroaldol enzymes. Protein Sci 21:717–726

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  Google Scholar 

  3. Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, Smith AJT et al (2012) Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J Am Chem Soc 134:16197–16206

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, StClair JL et al (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309–313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Tantillo DJ, Chen J, Houk KN (1998) Theozymes and compuzymes: theoretical models for biological catalysis. Curr Opin Chem Biol 2:743–750

    Article  PubMed  CAS  Google Scholar 

  6. Kim SP, Leach AG, Houk KN (2002) The origins of noncovalent catalysis of intermolecular Diels-Alder reactions by cyclodextrins, self-assembling capsules, antibodies, and RNAses. J Org Chem 67:4250–4260

    Article  PubMed  CAS  Google Scholar 

  7. Blake JF, Lim D, Jorgensen WL (1994) Enhanced hydrogen bonding of water to Diels-Alder transition states. Ab initio evidence. J Org Chem 59:803–805

    Article  CAS  Google Scholar 

  8. Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2012

    Article  PubMed  CAS  Google Scholar 

  9. Yli-Kauhaluoma JT, Ashley JA, Lo C-H, Tucker L, Wolfe MM, Janda KD (1995) Anti-metallocene antibodies: a new approach to enantioselective catalysis of the Diels-Alder reaction. J Am Chem Soc 117:7041–7047

    Article  CAS  Google Scholar 

  10. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA et al (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15:2785–2794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Besenmatter W, Kast P, Hilvert D (2007) Relative tolerance of mesostable and thermostable protein homologs to extensive mutation. Proteins 66:500–506

    Article  PubMed  CAS  Google Scholar 

  12. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K et al (2002) The Protein Data Bank. Acta Crystallogr Sect D: Biol Crystallogr 58:899–907

    Article  Google Scholar 

  13. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6:e19230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368

    Article  PubMed  CAS  Google Scholar 

  15. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 97:10383–10388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R et al (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Grabs-Röthlisberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smith, M.D., Zanghellini, A., Grabs-Röthlisberger, D. (2014). Computational Design of Novel Enzymes Without Cofactors. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics