Skip to main content

Screening Leishmania donovani Complex-Specific Genes Required for Visceral Disease

  • Protocol
  • First Online:
Parasite Genomics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1201))

Abstract

Leishmania protozoan parasites are the causing agent of leishmaniasis. Depending on the infecting species, Leishmania infection can causes a wide variety of diseases such as self-healing cutaneous lesions by L. major and fatal visceral leishmaniasis by L. donovani and L. infantum. Comparison of the visceral disease causing L. infantum genome with cutaneous disease causing L. major and L. braziliensis genomes has identified 25 L. infantum (L. donovani complex) species-specific genes that are absent or pseudogenes in L. major and L. braziliensis. To investigate whether these L. donovani complex species-specific genes are involved in visceral infection, we cloned these genes from L. donovani and introduced them into L. major and then determined whether the transgenic L. major had an increased ability to survive in liver and spleen of BALB/c mice. Several of these L. donovani complex specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice including the A2 and Ld2834 genes, while down regulation of these genes in L. donovani by either antisense RNA or gene knockout dramatically reduced L. donovani virulence in BALB/c mice. This demonstrated that L. donovani complex species-specific genes play important roles in visceral infection. In this chapter, we describe procedures to screen L. donovani complex specific genes required for visceral infection by cross species transgenic expression, gene deletion targeting and measuring infection levels in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herwaldt B (1999) Leishmaniasis. Lancet 354:1191–1199

    Article  CAS  PubMed  Google Scholar 

  2. Murray H, Berman J, Davis C et al (2005) Advances in Leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  3. Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239–243

    Article  CAS  PubMed  Google Scholar 

  4. Lipoldova M, Demant P (2006) Genetic susceptibility to infectious disease: lesions from mouse models of leishmaniasis. Nat Rev Genet 7:294–305

    Article  CAS  PubMed  Google Scholar 

  5. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882

    Article  CAS  PubMed  Google Scholar 

  6. Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed Central  PubMed  Google Scholar 

  7. Peacock CS, Seeger K, Harris D et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Smith DF, Peacock CS, Cruz AK (2007) Comparative genomics: from genotype to disease phenotype in the leishmaniasis. Int J Parasitol 37:1173–1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Rogers MB, Hilley JD, Dickens NJ et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Downing T, Imamura H, Decuypere S et al (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21:2143–2156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Charest H, Matlashewski G (1994) Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14:2975–2984

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Ghedin E, Zhang WW, Charest H, Sundar S, Kenney RT, Matlashewski G (1997) Antibody response against a Leishmania donovani amastigote-stage-specific protein in patients with visceral leishmaniasis. Clin Diagn Lab Immunol 4:530–535

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhang WW, Matlashewski G (1997) Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc Natl Acad Sci U S A 94:8807–8811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang WW, Matlashewski G (2001) Characterization of the A2–A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39:935–948

    Article  CAS  PubMed  Google Scholar 

  15. Zhang WW, Mendez S, Ghosh A et al (2003) Comparison of the A2 gene locus in Leishmania donovani and L. major and its control over cutaneous infection. J Biol Chem 278:35508–35515

    Article  CAS  PubMed  Google Scholar 

  16. Zhang WW, Matlashewski G (2010) Screening Leishmania donovani-specific genes required for visceral infection. Mol Microbiol 77(2):505–517

    Article  CAS  PubMed  Google Scholar 

  17. Medina-Acosta E, Cross GAM (1993) Rapid isolation of DNA from trypanosomatid protozoa using a simple “mini-prep” procedure. Mol Biochem Parasitol 59:327–329

    Article  CAS  PubMed  Google Scholar 

  18. Zhang WW, Charest H, Matlashewski G (1995) The expression of biologically active human p53 in Leishmania cells: a novel eukaryotic system to produce recombinant proteins. Nucleic Acids Res 23:4073–4080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang WW, Peacock CS, Matlashewski G (2008) A genomic-based approach combining in vivo selection in mice to identify a novel virulence gene in Leishmania. PloS Negl Trop Dis 2(6):e248

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zhang WW, Chan KF, Song Z, Matlashewski G (2011) Expression of a Leishmaniadonovani nucleotide sugar transporter in Leishmaniamajor enhances survival in visceral organs. Exp Parasitol 129:337–345

    Article  CAS  PubMed  Google Scholar 

  21. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128:217–228

    Article  CAS  PubMed  Google Scholar 

  22. Papadopoulou B, Roy G, Ouellette M (1994) Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Mol Biochem Parasitol 65:39–49

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Lye LF, Owens K, Shi H et al (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6(10):e1001161

    Article  PubMed Central  PubMed  Google Scholar 

  25. Papadopoulou B, Roy G, Dumas C (1997) Parameters controlling the rate of gene targeting frequency in the protozoan parasite Leishmania. Nucleic Acids Res 25:4278–4286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Canadian Institutes of Health Research for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Matlashewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, WW., Matlashewski, G. (2015). Screening Leishmania donovani Complex-Specific Genes Required for Visceral Disease. In: Peacock, C. (eds) Parasite Genomics Protocols. Methods in Molecular Biology, vol 1201. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1438-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1438-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1437-1

  • Online ISBN: 978-1-4939-1438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics