Skip to main content

Methods of Purification of CTL-Derived Exosomes

  • Protocol
  • First Online:
Cytotoxic T-Cells

Abstract

Exosomes are membrane nanovesicles (approximately <120 nm in size) released by most, if not all, living cells and in particular by leukocytes. They originate within the endocytic compartment by invagination of the endosome membrane. Therefore, they have a different biogenesis and molecular composition than microvesicles (>0.2 μm) shed from the plasma membrane. Although the functions of exosomes in vivo are beginning to be elucidated, increasing evidence suggests that exosomes constitute a mechanism of cell-to-cell communication, transferring antigens, proteins, mRNAs, and noncoding RNAs among cells. Interestingly, effector T cells including cytotoxic T lymphocytes (CTLs) release death-inducing molecules of the TNF superfamily through exosomes contained in their cytotoxic granules. The present chapter provides basic protocols for purification of exosomes secreted by CTLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stinchcombe JC, Griffiths GM (2003) The role of the secretory immunological synapse in killing by CD8+ CTL. Semin Immunol 15:301–305

    Article  CAS  PubMed  Google Scholar 

  2. Peters PJ, Geuze HJ, Van der Donk HA et al (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19:1469–1475

    Article  CAS  PubMed  Google Scholar 

  3. Monks CR, Freiberg BA, Kupfer H et al (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    Article  CAS  PubMed  Google Scholar 

  4. Stinchcombe JC, Bossi G, Booth S et al (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761

    Article  CAS  PubMed  Google Scholar 

  5. Peters PJ, Borst J, Oorschot V et al (1991) Cytotoxic T lymphocytes granules are secretory lysosomes containing both perforin and granzymes. J Exp Med 173:1099–1109

    Article  CAS  PubMed  Google Scholar 

  6. Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cells surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Lorenzo MJ, Anel A, Gamen S et al (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281

    CAS  PubMed  Google Scholar 

  8. Monleon I, Martinez-Lorenzo MJ, Monteagudo L et al (2001) Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol 167:6736–6744

    Article  CAS  PubMed  Google Scholar 

  9. Lettau M, Schmidt H, Kabelitz D et al (2007) Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 108:10–19

    Article  CAS  PubMed  Google Scholar 

  10. Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131

    Article  CAS  PubMed  Google Scholar 

  11. Stoorvogel W, Kleijmeer MJ, Geuze HJ et al (2002) The biogenesis and functions of exosomes. Traffic 3:321–330

    Article  CAS  PubMed  Google Scholar 

  12. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  13. Buschow SI, Nolte-‘tHoen ENM, Van Niel G et al (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–1542

    Article  CAS  PubMed  Google Scholar 

  14. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Cocucci E, Racchetti G, Meldolesi J (2008) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  Google Scholar 

  16. Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    CAS  PubMed  Google Scholar 

  17. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  18. Thery C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Raposo G, Tenza D, Mecheri S et al (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heijnen HF, Schiel AE, Fijnheer R et al (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  21. van Niel G, Raposo G, Candalh C et al (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–349

    Article  PubMed  Google Scholar 

  22. Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor antigens for CTL cross-priming. Nat Med 7:297–303

    Article  CAS  PubMed  Google Scholar 

  23. Caby MP, Lankar D, Vincendeau-Scherrer C et al (2005) Exosome-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  CAS  PubMed  Google Scholar 

  24. Pisitkum T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  Google Scholar 

  25. Admyre C, Grunewald J, Thyberg S et al (2003) Exosomes with major histocompatibility complex II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583

    Article  CAS  PubMed  Google Scholar 

  26. Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  CAS  PubMed  Google Scholar 

  27. Morelli AE, Larregina AT, Shufesky WJ et al (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266

    Article  CAS  PubMed  Google Scholar 

  28. Montecalvo A, Shufesky WJ, Beer Stolz D et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T-cell allorecognition. J Immunol 180:3081–3090

    Article  CAS  PubMed  Google Scholar 

  29. Feng D (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11:675–687

    Article  CAS  PubMed  Google Scholar 

  30. Thery C, Boussac M, Veron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    Article  CAS  PubMed  Google Scholar 

  31. Wubbolts R, Leckie RS, Veenhuizen PTM et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. J Biol Chem 278:10963–10972

    Article  CAS  PubMed  Google Scholar 

  32. Trajkovic K, Hsu C, Chiantia S et al (2009) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  Google Scholar 

  33. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  34. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    Article  CAS  PubMed  Google Scholar 

  35. Piper Hunter M, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3:e3694

    Article  Google Scholar 

  36. Skog J, Wurdinger T, van Rijn S et al (2008) Gliobastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247

    Article  PubMed Central  PubMed  Google Scholar 

  38. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    CAS  PubMed  Google Scholar 

  39. Fevrier B, Vilette D, Archer F et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rajendran L, Honsho M, Zahn TR et al (2006) Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103:11172–11177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pegtel M, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mittelbrunn, M., Gutierrez-Vasquez, C., Villarroya-Beltri, C., et al. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2, 282. DOI:10:1038/ncomms1285.

    Google Scholar 

  43. Thery C, Duban L, Segura E et al (2002) Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162

    Article  CAS  PubMed  Google Scholar 

  44. Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 19:756–766

    Article  Google Scholar 

  45. Muntasell A, Berger AC, Roche PA (2007) T Cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 26:4263–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Admyre C, Bohle B, Johansson SM et al (2007) B Cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce Th2-like cytokines. J Allergy Clin Immunol 120:1418–1424

    Article  CAS  PubMed  Google Scholar 

  47. Denzer K, van Eijk M, Kleijmeer MJ et al (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165:1259–1265

    Article  CAS  PubMed  Google Scholar 

  48. Blanchard N, Lankar D, Faure F et al (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J Immunol 168:3235–3241

    Article  CAS  PubMed  Google Scholar 

  49. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    Article  CAS  PubMed  Google Scholar 

  50. Del Cacho E, Gallego M, Lee SH et al (2012) Induction of protective immunity against Eimeria tenella, Eimeira maxima, and Eimeria acervulina infections using DC-derived exosomes. Infect Immun 80:1909–1916

    Article  PubMed Central  PubMed  Google Scholar 

  51. Kim SH, Lechman ER, Bianco N et al (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen induced arthritis. J Immunol 174:6440–6448

    Article  CAS  PubMed  Google Scholar 

  52. Prado N, Marazuela EV, Segura E et al (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525

    Article  CAS  PubMed  Google Scholar 

  53. Peche H, Renaudin K, Beriou G et al (2005) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transplant 6:1541–1550

    Article  Google Scholar 

  54. Andreola G, Rivoltini L, Castelli C et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Huber V, Fais S, Iero M et al (2005) Human colorectal cancer cells induced T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804

    Article  CAS  PubMed  Google Scholar 

  56. Klibi J, Niki T, Riedel A et al (2009) Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113:1957–1966

    Article  CAS  PubMed  Google Scholar 

  57. Taylor DD, Gercel-Taylor C, Lyons KS et al (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9:5113–5119

    CAS  PubMed  Google Scholar 

  58. Valenti R, Huber V, Filipazzi P et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    Article  CAS  PubMed  Google Scholar 

  59. Xiang X, Liu Y, Zhuang X et al (2010) TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol 177:1606–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Mignot G, Chalmin F, Ladoire S et al (2011) Tumor exosome-mediated MDSC activation. Am J Pathol 178:1403–1404

    Article  PubMed Central  PubMed  Google Scholar 

  61. Liu Y, Xiang X, Zhuang X et al (2010) Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol 176:2490–2499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Chalmin F, Ladoire S, Mignot G et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Blott EJ, Bossi G, Clark R et al (2001) Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J Cell Sci 114:2405–2416

    CAS  PubMed  Google Scholar 

  64. Zuccato E, Blott EJ, Holt O et al (2007) Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J Cell Sci 120:191–199

    Article  CAS  PubMed  Google Scholar 

  65. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  CAS  PubMed  Google Scholar 

  66. Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Cai Z, Yang F, Yu L et al (2012) Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol 188:5954–5961

    Article  CAS  PubMed  Google Scholar 

  68. Lugini L, Cecchetti S, Huber V et al (2012) Immune surveillance properties of human NK cell-derived exosomes. J Immunol 189:2833–2842

    Article  CAS  PubMed  Google Scholar 

  69. Munich S, Sobo-Vujanovic A, Buchser WJ et al (2012) Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 1:1074–1083

    Article  PubMed Central  PubMed  Google Scholar 

  70. Frangsmyr L, Baranov V, Nagaeva O et al (2005) Cytoplasmic microvesicular form of Fas ligand in human early placenta: switching the tissue immune privilege hypothesis from cellular to vesicular level. Mol Hum Reprod 11:35–41

    Article  CAS  PubMed  Google Scholar 

  71. Jodo S, Strehlow D, Ju S-T (2000) Bioactivities of Fas ligand-expressing retroviral particles. J Immunol 164:5062–5069

    Article  CAS  PubMed  Google Scholar 

  72. Jodo S, Hohlbaum AM, Xiao S et al (2000) CD95 (Fas) ligand-expressing vesicles display antibody-mediated, FcR-dependent enhancement of cytotoxicity. J Immunol 165:5487–5494

    Article  CAS  PubMed  Google Scholar 

  73. Lamparski HG, Metha-Damani A, Yao J-Y et al (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270:211–226

    Article  CAS  PubMed  Google Scholar 

  74. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Thery C, Clayton A, Amigorena S et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocol in cell biology. Wiley, New York, pp 3.22.1–3.22.29

    Google Scholar 

Download references

Acknowledgements

We thank the Research Specialists Olga A. Tkacheva and William J. Shufesky (University of Pittsburgh, Pittsburgh, PA, USA) for their comments. We also thank Dr. Lawrence P. Kane for his revisions. This work was supported by the National Institutes of Health grant AI077511 (to A.T.L.), and funds from the T.E. Starzl Transplantation Institute (to A.E.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Montecalvo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Montecalvo, A., Larregina, A.T., Morelli, A.E. (2014). Methods of Purification of CTL-Derived Exosomes. In: Ranieri, E. (eds) Cytotoxic T-Cells. Methods in Molecular Biology, vol 1186. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1158-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1158-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1157-8

  • Online ISBN: 978-1-4939-1158-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics