Skip to main content

Isolation of Urinary Exosomes for RNA Biomarker Discovery Using a Simple, Fast, and Highly Scalable Method

  • Protocol
  • First Online:
RNA Mapping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1182))

Abstract

Urinary exosomes are nanovesicles (40–100 nm) of endocytic origin that are secreted into the urine when a multivesicular body fuses with the membrane of cells from all nephron segments. Interest in urinary exosomes intensified after the discovery that they contain not only protein and mRNA but also microRNA (miRNA) markers of renal dysfunction and structural injury. Currently, the most widely used protocol for the isolation of urinary exosomes is based on ultracentrifugation, a method that is time consuming, requires expensive equipment, and has low scalability, which limits its applicability in the clinical practice.

In this chapter, a simple, fast, and highly scalable step-by-step method for isolation of urinary exosomes is described. This method starts with a 10-min centrifugation of 10 ml urine, then the supernatant is saved (SN1), and the pellet is treated with dithiothreitol and heat to release and recover those exosomes entrapped by polymeric Tamm–Horsfall protein. The treated pellet is then resuspended and centrifuged, and the supernatant obtained (SN2) is combined with the first supernatant, SN1. Next, 3.3 ml of ExoQuick-TC, a commercial exosome precipitation reagent, is added to the total supernatant (SN1 + SN2), mixed well, and saved for at least 12 h at 4 °C. Finally, a pellet of exosomes is obtained after a 30-min centrifugation of the supernatant/ExoQuick-TC mix. We previously compared this method with five others used to isolate urinary exosomes and found that this is the simplest, fastest, and most effective alternative to ultracentrifugation-based protocols if the goal of the study is RNA profiling. A method for isolation and quantification of miRNAs and mRNAs from urinary exosomes is also described here. In addition, we provide a step-by-step description of exosomal miRNA profiling using universal reverse transcription and SYBR qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewitt SM, Dear J, Star RA (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15:1677–1689

    Article  PubMed  Google Scholar 

  2. Tomlanovich S, Golbetz H, Perlroth M et al (1986) Limitations of creatinine in quantifying the severity of cyclosporine-induced chronic nephropathy. Am J Kidney Dis 8:332–337

    Article  CAS  PubMed  Google Scholar 

  3. Tsalamandris C, Allen TJ, Gilbert RE (1994) Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 43:649–655

    Article  CAS  PubMed  Google Scholar 

  4. Macisaac RJ, Jerums G (2011) Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 20:246–257

    Article  CAS  PubMed  Google Scholar 

  5. Pisitkun T, Johnstone R, Knepper MA (2006) Discovery of urinary biomarkers. Mol Cell Proteomics 5:1760–1771

    Article  CAS  PubMed  Google Scholar 

  6. Nilsson J, Skog J, Nordstrand A et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Van Balkom BW, Pisitkun T, Verhaar MC et al (2011) Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases. Kidney Int 80:1138–1145

    Article  PubMed Central  PubMed  Google Scholar 

  8. Miranda KC, Bond DT, McKee M et al (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78:191–199

    Article  PubMed  Google Scholar 

  9. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  10. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhou H, Yuen PS, Pisitkun T et al (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69:1471–1476

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Gonzales PA, Pisitkun T, Hoffert JD et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gonzales PA, Zhou H, Pisitkun T et al (2010) Isolation and purification of exosomes in urine. Methods Mol Biol 641:89–99

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez-Llama P, Khositseth S, Gonzales PA et al (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77:736–747

    Article  PubMed Central  PubMed  Google Scholar 

  15. Thery C, Clayton A, Amigorena S et al (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22.1–22.29

    Google Scholar 

  16. Cheruvanky A, Zhou H, Pisitkun T et al (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292:F1657–F1661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Taylor DD, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 728:235–246

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez ML, Khosroheidari M, Kanchi Ravi R et al (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82:1024–1032

    Article  CAS  PubMed  Google Scholar 

  19. Kato M, Zhang J, Wang M et al (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Putta S, Lanting L, Sun G et al (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Alvarez ML, Khosroheidari M, Eddy E et al (2013) Role of microRNA 1207-5p and its host gene, the long non-coding RNA PVT1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 8:e77468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Alvarez ML, DiStefano JK (2011) Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 6:e18671

    Article  PubMed Central  PubMed  Google Scholar 

  23. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034

    Google Scholar 

  24. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gautier JC, Riefke B, Walter J et al (2010) Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol Pathol 38:943–956

    Article  CAS  PubMed  Google Scholar 

  26. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5520

    Article  CAS  PubMed  Google Scholar 

  27. Andreasen D, Fog JU, Biggs W et al (2010) Improved microRNA quantification in total RNA from clinical samples. Methods 50:S6–S9

    Article  CAS  PubMed  Google Scholar 

  28. Castoldi M, Schmidt S, Benes V et al (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3:321–329

    Article  CAS  PubMed  Google Scholar 

  29. Beuvink I, Kolb FA, Budach W et al (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52

    Article  PubMed Central  PubMed  Google Scholar 

  30. McAlexander MA, Phillips MJ, Witwer KW (2013) Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet 4:83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mestdagh P, Van Vlierberghe P, De Weer A et al (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10:R64

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chang KH, Mestdagh P, Vandesompele J et al (2010) MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 10:173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pfaffl MW, Tichopad A, Prgomet C et al (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Roney Family Foundation for the support of this study, to Madieh (Tala) Khosroheidari and Dr. Rupesh Kanchi Ravi for their valuable help in performing part of the experiments, and to Paul Arnold for the critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lucrecia Alvarez M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alvarez, M.L. (2014). Isolation of Urinary Exosomes for RNA Biomarker Discovery Using a Simple, Fast, and Highly Scalable Method. In: Alvarez, M., Nourbakhsh, M. (eds) RNA Mapping. Methods in Molecular Biology, vol 1182. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1062-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1062-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1061-8

  • Online ISBN: 978-1-4939-1062-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics