Skip to main content

Evaluating Cytoplasmic and Nuclear Levels of Inflammatory Cytokines in Cancer Cells by Western Blotting

  • Protocol
  • First Online:
Cytokine Bioassays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1172))

Abstract

Increased expression and cellular release of inflammatory cytokines, interleukin-8 (IL-8; CXCL8), and high mobility group box-1 (HMGB1) are associated with increased cell proliferation, angiogenesis, and metastasis during cancer progression. In prostate and ovarian cancer cells, increased levels of IL-8 and HMGB1 correlate with poor prognosis. We have recently shown that proteasome inhibition by bortezomib (BZ) specifically increases IL-8 release from metastatic prostate and ovarian cancer cells. In this chapter, we describe a protocol to analyze the cytoplasmic and nuclear levels of IL-8 and HMGB1 in prostate and ovarian cancer cells by western blotting. IL-8 is localized in the cytoplasm in both cell types, and its protein levels are significantly increased by BZ. In contrast, HMGB1 is localized in the nucleus, and BZ increases its nuclear levels only in ovarian cancer cells. The protocol includes isolation of cytoplasmic and nuclear extracts, followed by SDS electrophoresis and western blotting, and can be easily modified to analyze the cytoplasmic and nuclear cytokine levels in other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12:97–106

    CAS  PubMed  Google Scholar 

  2. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741

    Article  CAS  PubMed  Google Scholar 

  3. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  4. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  6. Araki S, Omori Y, Lyn D et al (2007) Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res 67:6854–6862

    Article  CAS  PubMed  Google Scholar 

  7. Singh RK, Lokeshwar BL (2011) The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res 71:3268–3277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chen J, Xi B, Zhao Y et al (2012) High-mobility group protein B1 (HMGB1) is a novel biomarker for human ovarian cancer. Gynecol Oncol 126:109–117

    Article  CAS  PubMed  Google Scholar 

  9. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  10. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  11. Bell CW, Jiang W, Reich CF III et al (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:1318–1325

    Article  Google Scholar 

  12. Sha Y, Zmijewski J, Xu Z et al (2008) HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180:2531–2537

    Article  CAS  PubMed  Google Scholar 

  13. Tang D, Kang R, Cheh CW et al (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tang D, Kang R, Livesey KM et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gnanasekar M, Kalyanasundaram R, Zheng G et al (2013) HMGB1: a promising therapeutic target for prostate cancer. Prostate Cancer 2013:1–8

    Article  Google Scholar 

  16. Chen J, Liu X, Zhang J et al (2012) Targeting HMGB1 inhibits ovarian cancer growth and metastasis by lentivirus-mediated RNA interference. J Cell Physiol 227:3629–3638

    Article  CAS  PubMed  Google Scholar 

  17. Lu B, Nakamura T, Inouye K et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674

    Article  CAS  PubMed  Google Scholar 

  18. Lu B, Wang H, Andersson U et al (2013) Regulation of HMGB1 release by inflammasomes. Protein Cell 4:163–167

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Antoine DJ, Andersson U et al (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93:865–873

    Article  CAS  PubMed  Google Scholar 

  20. Guo ZS, Liu Z, Bartlett DL et al (2013) Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am J Cancer Res 3:1–20

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Li W, Zhu S, Li J et al (2011) EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol 81:1152–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Manna S, Singha B, Phyo SA et al (2013) Proteasome inhibition by bortezomib increases IL-8 expression in androgen-independent prostate cancer cells: the role of IKKα. J Immunol 191:2837–2846

    Article  CAS  PubMed  Google Scholar 

  23. Singha B, Gatla H, Manna S et al (2014) Proteasome inhibition increases recruitment of IKKβ, S536P-p65 and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J Biol Chem 289:2687–2700

    Article  CAS  PubMed  Google Scholar 

  24. Miskolci V, Ghosh CC, Rollins J et al (2006) TNFα release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export. Biochem Biophys Res Commun 351:354–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant CA173452 to I. Vancurova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Vancurova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Gatla, H.R., Singha, B., Persaud, V., Vancurova, I. (2014). Evaluating Cytoplasmic and Nuclear Levels of Inflammatory Cytokines in Cancer Cells by Western Blotting. In: Vancurova, I. (eds) Cytokine Bioassays. Methods in Molecular Biology, vol 1172. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0928-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0928-5_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0927-8

  • Online ISBN: 978-1-4939-0928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics