Skip to main content

Analysis of IL-17 Production by Flow Cytometry and ELISPOT Assays

  • Protocol
  • First Online:
Cytokine Bioassays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1172))

Abstract

Interleukin (IL)-17 represents a family of cytokines with six members, namely IL-17A, B, C, D, E, and F. IL-17A and IL-17F are best studied proinflammatory cytokines. CD4+ T helper cells producing IL-17A have been identified as a distinct T helper subset, Th17 cells. IL-17 and Th17 cells are important mediators in tissue inflammation in immune-mediated inflammatory diseases. IL-17 is also produced by other immune cells and plays an important role in host defense against microbial infection. Cell-based assays are sensitive and quantitative, and enable identification of cellular sources of IL-17 production. This chapter describes usage of flow cytometry and ELISPOT assays to quantify IL-17A-producing cells in disease and in vitro experiments to study T cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouvier E, Luciani MF, Mattei MG et al (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150:5445–5456

    CAS  PubMed  Google Scholar 

  2. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  CAS  PubMed  Google Scholar 

  3. Miossec P, Kolls JK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11:763–776

    Article  CAS  PubMed  Google Scholar 

  4. Wright JF, Guo Y, Quazi A et al (2007) Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem 282:13447–13455

    Article  CAS  PubMed  Google Scholar 

  5. Aggarwal S, Ghilardi N, Xie MH et al (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    Article  CAS  PubMed  Google Scholar 

  6. Harrington LE, Hatton RD, Mangan PR et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  7. Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  CAS  PubMed  Google Scholar 

  9. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949

    Article  CAS  PubMed  Google Scholar 

  10. Murphy CA, Langrish CL, Chen Y et al (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198:1951–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  12. Haines CJ, Chen Y, Blumenschein WM et al (2013) Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep 3:1378–1388

    Article  CAS  PubMed  Google Scholar 

  13. Martin B, Hirota K, Cua DJ et al (2009) Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–330

    Article  CAS  PubMed  Google Scholar 

  14. Cho JS, Pietras EM, Garcia NC et al (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120:1762–1773

    Article  PubMed Central  PubMed  Google Scholar 

  15. Puel A, Cypowyj S, Bustamante J et al (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yang XO, Chang SH, Park H et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Karlsson AC, Martin JN, Younger SR et al (2003) Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Methods 283:141–153

    Article  CAS  PubMed  Google Scholar 

  18. Anthony DD, Lehmann PV (2003) T-cell epitope mapping using the ELISPOT approach. Methods 29:260–269

    Article  CAS  PubMed  Google Scholar 

  19. Zhao L, Jiang Z, Jiang Y et al (2013) IL-22(+) CD4(+) T cells in patients with rheumatoid arthritis. Int J Rheum Dis 16:518–526

    Article  CAS  PubMed  Google Scholar 

  20. Zhao L, Jiang Z, Jiang Y et al (2013) IL-22+CD4+ T-cells in patients with active systemic lupus erythematosus. Exp Biol Med (Maywood) 238:193–199

    Article  CAS  Google Scholar 

  21. Morita Y, Ismail DM, Elkon KB et al (2011) Dichotomous response to transforming growth factor beta after T cell receptor activation by naive CD4+ T cells from DBA/1 mice: enhanced retinoic acid receptor-related orphan nuclear receptor gammat expression yet reduced FoxP3 expression. Arthritis Rheum 63:118–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Yomogida K, Chou YK, Chu CQ (2013) Superantigens induce IL-17 production from polarized Th1 clones. Cytokine 63:6–9

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Paul WE (2010) CD4+ T cell plasticity-Th2 cells join the crowd. Immunity 32:11–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chou YK, Henderikx P, Vainiene M et al (1991) Specificity of human T cell clones reactive to immunodominant epitopes of myelin basic protein. J Neurosci Res 28:280–290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Institutes of Health AR-055254 (CQC) and the National Natural Science Foundation of China (No. 30972610) (YJ and ZJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Qiu Chu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zhao, L., Chou, Y., Jiang, Y., Jiang, Z., Chu, CQ. (2014). Analysis of IL-17 Production by Flow Cytometry and ELISPOT Assays. In: Vancurova, I. (eds) Cytokine Bioassays. Methods in Molecular Biology, vol 1172. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0928-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0928-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0927-8

  • Online ISBN: 978-1-4939-0928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics