Skip to main content

Assessment of Cytokine-Modulated Proteasome Activity

  • Protocol
  • First Online:
Cytokine Bioassays

Abstract

This chapter presents two methods for assessment of proteasome function. The first is a modification of the standard fluorogenic peptide cleavage assay which takes into account the effect of ATP on proteasome activity. This method is described in both its macro and high throughput micro-assay forms. The second is the Proteasome Constitutive Immuno-Subunit (active site) ELISA or ProCISE method. ProCISE is a modification of active site directed probe analysis and allows for convenient differentiation between active constitutive and immuno-subunits. While the utility of measuring proteasome activity and its relationship to cytokine action and inflammation are clear, the assessment and interpretation is not always straightforward. Therefore, we also discuss the pitfalls of the standard fluorogenic assay, particularly in the interpretation of results obtained, and the advantages of the newer, ProCISE assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean RT (1979) Lysosomes and protein degradation. Ciba Found Symp 75:139–149

    Google Scholar 

  2. Murachi T, Tanaka K, Hatanaka M et al (1980) Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul 19: 407–24

    Article  CAS  PubMed  Google Scholar 

  3. Arrigo AP, Tanaka K, Goldberg AL et al (1988) Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 331:192–4

    Article  CAS  PubMed  Google Scholar 

  4. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695: 19–31

    Article  CAS  PubMed  Google Scholar 

  5. Angeles A, Fung G, Luo H (2012) Immune and non-immune functions of the immunoproteasome. Front Biosci 17:1904–16

    Article  CAS  Google Scholar 

  6. Ebstein F, Kloetzel PM, Kruger E et al (2012) Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 69:2543–58

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Li J, Zheng H et al (2011) Proteasome functional insufficiency in cardiac pathogenesis. Am J Physiol Heart Circ Physiol 301: H2207–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Powell SR, Herrmann J, Lerman A et al (2012) The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci 109:295–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schmidt N, Gonzalez E, Visekruna A et al (2010) Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut 59:896–906

    Article  CAS  PubMed  Google Scholar 

  10. Conner EM, Brand S, Davis JM et al (1997) Proteasome inhibition attenuates nitric oxide synthase expression, VCAM-1 transcription and the development of chronic colitis. J Pharmacol Exp Ther 282:1615–22

    CAS  PubMed  Google Scholar 

  11. Takaoka M, Itoh M, Hayashi S et al (1999) Proteasome participates in the pathogenesis of ischemic acute renal failure in rats. Eur J Pharmacol 384:43–6

    Article  CAS  PubMed  Google Scholar 

  12. Zaouali MA, Bardag-Gorce F, Carbonell T et al (2013) Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury. Exp Mol Pathol 94:352–9

    Article  CAS  PubMed  Google Scholar 

  13. Zu L, Bedja D, Fox-Talbot K et al (2010) Evidence for a role of immunoproteasomes in regulating cardiac muscle mass in diabetic mice. J Mol Cell Cardiol 49:5–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Otoda T, Takamura T, Misu H et al (2013) Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes 62:811–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Weiss CH, Budinger GR, Mutlu GM et al (2010) Proteasomal regulation of pulmonary fibrosis. Proc Am Thorac Soc 7:77–83

    Article  PubMed Central  PubMed  Google Scholar 

  16. Opattova A, Filipcik P, Cente M et al (2013) Intracellular degradation of misfolded tau protein induced by geldanamycin is associated with activation of proteasome. J Alzheimers Dis 33:339–48

    CAS  PubMed  Google Scholar 

  17. Palmowski MJ, Gileadi U, Salio M et al (2006) Role of immunoproteasomes in cross-presentation. J Immunol 177:983–90

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Maldonado MA (2006) The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3:255–61

    CAS  PubMed  Google Scholar 

  19. Christmann RB, Mathes A, Affandi AJ et al (2013) Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor beta. Arthritis Rheum 65:1335–46

    Article  CAS  PubMed  Google Scholar 

  20. Connor AM, Mahomed N, Gandhi R et al (2012) TNFalpha modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 14:R62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Vereecke L, Beyaert R, van Loo G (2009) The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 30:383–91

    Article  CAS  PubMed  Google Scholar 

  22. Kanazawa N (2012) Rare hereditary autoinflammatory disorders: towards an understanding of critical in vivo inflammatory pathways. J Dermatol Sci 66:183–9

    Article  CAS  PubMed  Google Scholar 

  23. Grune T, Jung T, Merker K et al (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–30

    Article  CAS  PubMed  Google Scholar 

  24. Jung T, Grune T (2012) Structure of the proteasome. Prog Mol Biol Transl Sci 109:1–39

    Article  CAS  PubMed  Google Scholar 

  25. Qureshi N, Morrison DC, Reis J (2012) Proteasome protease mediated regulation of cytokine induction and inflammation. Biochim Biophys Acta 1823:2087–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Song X, von Kampen J, Slaughter CA et al (1997) Relative functions of the alpha and beta subunits of the proteasome activator, PA28. J Biol Chem 272:27994–8000

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Krutchinsky A, Endicott S et al (1999) Proteasome activator 11S REG or PA28: recombinant REG alpha/REG beta hetero-oligomers are heptamers. Biochemistry 38:5651–8

    Article  CAS  PubMed  Google Scholar 

  28. Stohwasser R, Salzmann U, Giesebrecht J et al (2000) Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur J Biochem 267:6221–30

    Article  CAS  PubMed  Google Scholar 

  29. Whitby FG, Masters EI, Kramer L et al (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–20

    Article  CAS  PubMed  Google Scholar 

  30. Glynne R, Powis SH, Beck S et al (1991) A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353:357–60

    Article  CAS  PubMed  Google Scholar 

  31. Martinez CK, Monaco JJ (1991) Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 353: 664–7

    Article  CAS  PubMed  Google Scholar 

  32. Nandi D, Jiang H, Monaco JJ (1996) Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol 156:2361–4

    CAS  PubMed  Google Scholar 

  33. Groll M, Ditzel L, Lowe J et al (1997) Structure of 20S proteasome from yeast at 2.4A resolution. Nature 386:463–71

    Article  CAS  PubMed  Google Scholar 

  34. Tanahashi N, Murakami Y, Minami Y et al (2000) Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 275: 14336–45

    Article  CAS  PubMed  Google Scholar 

  35. Murata S, Sasaki K, Kishimoto T et al (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316: 1349–53

    Article  CAS  PubMed  Google Scholar 

  36. Calise J, Powell SR (2013) The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circ Physiol 304:H337–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Drews O, Wildgruber R, Zong C et al (2007) Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 6:2021–31

    Article  CAS  PubMed  Google Scholar 

  38. Zhou HJ, Aujay MA, Bennett MK et al (2009) Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 52:3028–38

    Article  CAS  PubMed  Google Scholar 

  39. Screen M, Britton M, Downey SL et al (2010) Nature of pharmacophore influences active site specificity of proteasome inhibitors. J Biol Chem 285:40125–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kirk CJ (2012) Discovery and development of second-generation proteasome inhibitors. Semin Hematol 49:207–14

    Article  CAS  PubMed  Google Scholar 

  41. Rajkumar SV, Richardson PG, Hideshima T et al (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–9

    Article  CAS  PubMed  Google Scholar 

  42. Chen D, Frezza M, Schmitt S et al (2011)Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11:239–253

    Google Scholar 

  43. Pahl HL, Baeuerle PA (1996) Control of gene expression by proteolysis. Curr Opin Cell Biol 8:340–7

    Article  CAS  PubMed  Google Scholar 

  44. Gotze S, Bose A, Abele D et al (2013) Pitfalls in invertebrate proteasome assays. J Exp Biol 216: 1351–1354

    Google Scholar 

  45. Reinheckel T, Sitte N, Ullrich O et al (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335 (Pt 3):637–42

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Powell SR, Davies KJ, Divald A (2007) Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations. J Mol Cell Cardiol 42:265–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Muchamuel T, Basler M, Aujay MA et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15:781–7

    Article  CAS  PubMed  Google Scholar 

  48. Bennett MK, Buchholz TJ, Demo SD et al (2006) Compounds for enzyme inhibition. US Patent No: 2006/0088471 A1, USA

    Google Scholar 

  49. Moravec RA, O'Brien MA, Daily WJ et al (2009) Cell-based bioluminescent assays for all three proteasome activities in a homogeneous format. Anal Biochem 387:294–302

    Article  CAS  PubMed  Google Scholar 

  50. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739–58

    Article  CAS  PubMed  Google Scholar 

  51. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364–78

    Article  CAS  PubMed  Google Scholar 

  52. French SW, Mayer RJ, Bardag-Gorce F et al (2001) The ubiquitin-proteasome 26s pathway in liver cell protein turnover: effect of ethanol and drugs. Alcohol Clin Exp Res 25:225S–229S

    Article  CAS  PubMed  Google Scholar 

  53. Divald A, Kivity S, Wang P et al (2010) Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits. Circ Res 106: 1829–38

    Article  CAS  PubMed  Google Scholar 

  54. Powell SR, Samuel SM, Wang P et al (2008) Upregulation of myocardial 11S-activated proteasome in experimental hyperglycemia. J Mol Cell Cardiol 44:618–21

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Robbins J (2006) Heart failure and protein quality control. Circ Res 99: 1315–28

    Article  CAS  PubMed  Google Scholar 

  56. Ferrington DA, Gregerson DS (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109: 75–112

    Article  CAS  PubMed  Google Scholar 

  57. Lightcap ES, McCormack TA, Pien CS et al (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–83

    CAS  PubMed  Google Scholar 

  58. Parlati F, Lee SJ, Aujay M et al (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114: 3439–47

    Article  CAS  PubMed  Google Scholar 

  59. Rodgers KJ, Dean RT (2003) Assessment of proteasome activity in cell lysates and tissue homogenates using peptide substrates. Int J Biochem Cell Biol 35:716–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund J. Miller Ph.D., C.Chem., F.R.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Kirk, C.J., Powell, S.R., Miller, E.J. (2014). Assessment of Cytokine-Modulated Proteasome Activity. In: Vancurova, I. (eds) Cytokine Bioassays. Methods in Molecular Biology, vol 1172. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0928-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0928-5_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0927-8

  • Online ISBN: 978-1-4939-0928-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics