Skip to main content

Analyzing Cell Cycle-Dependent Degradation and Ubiquitination in Budding Yeast

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1170))

Abstract

Cell cycle progression is tightly regulated to prevent uncontrolled growth and division. Specific cell cycle factors are responsible for driving the cell from one cell cycle stage to the next. Many of these proteins are targeted for degradation by the ubiquitin proteasome system when their function is no longer required or may disrupt cell cycle progression. Here we describe a series of experiments used to study the ubiquitin-mediated degradation of cell cycle proteins. This collection of assays may be used to determine the requirement for individual proteins in the degradation and ubiquitination of cell cycle proteins in Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holloway SL, Glotzer M, King RW, Murray AW (1993) Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73(7):1393–1402

    Article  CAS  PubMed  Google Scholar 

  2. Won KA, Reed SI (1996) Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15(16):4182–4193

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11(8):957–972

    Article  CAS  PubMed  Google Scholar 

  4. Schneider BL, Yang QH, Futcher AB (1996) Linkage of replication to start by the Cdk inhibitor Sic1. Science 272(5261):560–562

    Article  CAS  PubMed  Google Scholar 

  5. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269(5224):682–685

    Article  CAS  PubMed  Google Scholar 

  6. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63(6):1129–1136

    Article  CAS  PubMed  Google Scholar 

  7. Hofmann F, Martelli F, Livingston DM, Wang Z (1996) The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev 10(23):2949–2959

    Article  CAS  PubMed  Google Scholar 

  8. Hateboer G, Kerkhoven RM, Shvarts A, Bernards R, Beijersbergen RL (1996) Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev 10(23):2960–2970

    Article  CAS  PubMed  Google Scholar 

  9. Michael WM, Newport J (1998) Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282(5395):1886–1889

    Article  CAS  PubMed  Google Scholar 

  10. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13):8206–8214

    CAS  PubMed  Google Scholar 

  11. Wilkinson KD, Urban MK, Haas AL (1980) Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255(16):7529–7532

    CAS  PubMed  Google Scholar 

  12. Ciechanover A, Elias S, Heller H, Hershko A (1982) “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem 257(5):2537–2542

    CAS  PubMed  Google Scholar 

  13. Teixeira LK, Reed SI (2013) Ubiquitin ligases and cell cycle control. Annu Rev Biochem 82:387–414

    Article  CAS  PubMed  Google Scholar 

  14. King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81(2):279–288

    Article  CAS  PubMed  Google Scholar 

  15. Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6(2):185–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10(24):3081–3093

    Article  CAS  PubMed  Google Scholar 

  17. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053

    Article  CAS  PubMed  Google Scholar 

  18. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199

    Article  CAS  PubMed  Google Scholar 

  19. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91(2):209–219

    Article  CAS  PubMed  Google Scholar 

  20. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230

    Article  CAS  PubMed  Google Scholar 

  21. Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284(5414):662–665

    Article  CAS  PubMed  Google Scholar 

  22. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294(5540):173–177

    Article  CAS  PubMed  Google Scholar 

  23. Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413(6853):316–322

    Article  CAS  PubMed  Google Scholar 

  24. Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001) Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413(6853):311–316

    Article  CAS  PubMed  Google Scholar 

  25. Ayad NG, Rankin S, Murakami M, Jebanathirajah J, Gygi S, Kirschner MW (2003) Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell 113(1):101–113

    Article  CAS  PubMed  Google Scholar 

  26. Piotrowski J, Beal R, Hoffman L, Wilkinson KD, Cohen RE, Pickart CM (1997) Inhibition of the 26S proteasome by polyubiquitin chains synthesized to have defined lengths. J Biol Chem 272(38):23712–23721

    Article  CAS  PubMed  Google Scholar 

  27. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tomko RJ Jr, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    Article  CAS  PubMed  Google Scholar 

  29. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  30. Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94(11):5611–5616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tanaka T, Knapp D, Nasmyth K (1997) Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90(4):649–660

    Article  CAS  PubMed  Google Scholar 

  32. Drury LS, Perkins G, Diffley JFX (2000) The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol 10(5):231–240

    Article  CAS  PubMed  Google Scholar 

  33. Saleh A, Collart M, Martens JA, Genereaux J, Allard S, Cote J, Brandl CJ (1998) TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J Mol Biol 282(5):933–946

    Article  CAS  PubMed  Google Scholar 

  34. Kim DH, Zhang W, Koepp DM (2012) The hect domain E3 ligase Tom1 and the F-box protein Dia2 control Cdc6 degradation in G1 phase. J Biol Chem 287(53):44212–44220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant GM076663 (D.M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanna M. Koepp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, DH., Koepp, D.M. (2014). Analyzing Cell Cycle-Dependent Degradation and Ubiquitination in Budding Yeast. In: Noguchi, E., Gadaleta, M. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 1170. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0888-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0888-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0887-5

  • Online ISBN: 978-1-4939-0888-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics