Skip to main content

Chromatin Immunoprecipitation for ChIP-chip and ChIP-seq

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Bacterial adaptation to given environmental conditions is largely achieved by complex gene regulatory processes. To address the question how and to what extend single transcriptional regulators modulate gene expression, chromatin immunoprecipitation (ChIP) coupled to DNA microarrays (ChIP-chip) or to next-generation sequencing (ChIP-seq) is one of the preferred methods. Both ChIP-chip and ChIP-seq can generate genome-wide maps of protein–DNA interactions and thus identify primary regulons of transcription factors. In combination with transcriptome analyses, the obtained data can be used to compile complex regulatory networks which in terms will advance our understanding of bacterial adaptation processes to specific environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wade JT et al (2007) Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Mol Microbiol 65(1):21–26

    Article  CAS  Google Scholar 

  2. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81(14):4275–4279

    Article  CAS  Google Scholar 

  3. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5(8):2009–2018

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947

    Article  CAS  Google Scholar 

  5. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104

    Article  CAS  Google Scholar 

  6. Schmiedeberg L et al (2009) A temporal threshold for formaldehyde crosslinking and fixation. PLoS One 4(2):e4636

    Article  Google Scholar 

  7. Zeng PY et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41(6):694, 696, 698

    Article  CAS  Google Scholar 

  8. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402

    Article  CAS  Google Scholar 

  9. Liu ET, Pott S, Huss M (2010) Q&A: ChIP-seq technologies and the study of gene regulation. BMC Biol 8:56

    Article  CAS  Google Scholar 

  10. Metz B et al (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243

    Article  CAS  Google Scholar 

  11. Goodman AL, Lory S (2004) Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. Curr Opin Microbiol 7(1):39–44

    Article  CAS  Google Scholar 

  12. Ren B et al (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309

    Article  CAS  Google Scholar 

  13. Johnson DS et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  Google Scholar 

  14. Gilfillan GD et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645

    Article  CAS  Google Scholar 

  15. Shankaranarayanan P et al (2012) Single-tube linear DNA amplification for genome-wide studies using a few thousand cells. Nat Protoc 7(2):328–338

    Article  CAS  Google Scholar 

  16. O'Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38(7):835–841

    Article  CAS  Google Scholar 

  17. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1(1): 179–185

    Article  CAS  Google Scholar 

  18. Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3(6):1032–1045

    Article  CAS  Google Scholar 

  19. Flanagin S et al (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36(3):e17

    Article  Google Scholar 

  20. Lefrancois P et al (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37

    Article  Google Scholar 

  21. Waldminghaus T, Skarstad K (2010) ChIP on Chip: surprising results are often artifacts. BMC Genomics 11:414

    Article  Google Scholar 

  22. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    Article  CAS  Google Scholar 

  23. Liu CL, Schreiber SL, Bernstein BE (2003) Development and validation of a T7 based linear amplification for genomic DNA. BMC Genomics 4(1):19

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the President’s Initiative and Networking Funds of the Helmholtz Association of German Research Centers (HGF) under contract VH-GS-202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Häussler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schulz, S., Häussler, S. (2014). Chromatin Immunoprecipitation for ChIP-chip and ChIP-seq. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_45

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics