Skip to main content

Liquid Chromatography/Mass Spectrometry for the Identification and Quantification of Rhamnolipids

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Rhamnolipids (RL) are surface-active glycolipids produced by Pseudomonas aeruginosa. They are always produced by this bacterium as a complex mixture of congeners, each composed of one or two rhamnose molecules linked to a dimer of 3-hydroxyfatty acids with a chain length of 8–12 carbons. Increasing interest for RL drives the need for efficient analytical methods to characterize these mixtures of molecules.

High-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS) is a very precise and relatively high-throughput method for the identification of each congener and their quantification in bacterial cultures. Using 13C-labeled RL as internal standards can further enhance the precision of the quantification. Collision-induced dissociation (CID) experiments by MS/MS is a powerful tool for the detection and identification of structural variations in RL produced by various Pseudomonas strains or by a specific strain under different culture conditions. CID even allows the discrimination between isomers with subtle structural variations, like Rha-C8-C10 and Rha-C10-C8, which are almost inseparable chromatographically. We are presenting here the detailed protocols for HPLC/MS and HPLC/MS/MS analysis of RL and their lipid precursors, the 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAA), directly in bacterial culture supernatants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarvis FG, Johnson MJ (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  2. Hauser G, Karnovsky ML (1954) Studies on the production of glycolipid by Pseudomonas aeruginosa. J Bacteriol 68:645–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurioka S, Liu PV (1967) Effect of the hemolysin of Pseudomonas aeruginosa on phosphatides and on phospholipase c activity. J Bacteriol 93:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sierra G (1960) Hemolytic effect of a glycolipid produced by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 26:189–192

    Article  CAS  PubMed  Google Scholar 

  7. Hisatsuka K-I, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agr Biol Chem 35: 686–692

    Article  Google Scholar 

  8. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agr Biol Chem 36:2233–2235

    Article  CAS  Google Scholar 

  9. Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C 40:51–60

    Article  CAS  PubMed  Google Scholar 

  10. Koch AK, Käppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Read RC, Roberts P, Munro N, Rutman A, Hastie A, Shryock T, Hall R, McDonald-Gibson W, Lund V, Taylor G (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol 72:2271–2277

    Article  CAS  PubMed  Google Scholar 

  12. Kownatzki R, Tummler B, Doring G (1987) Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet 1: 1026–1027

    Article  CAS  PubMed  Google Scholar 

  13. McClure CD, Schiller NL (1992) Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 51:97–102

    Article  CAS  PubMed  Google Scholar 

  14. Kharazmi A, Bibi Z, Nielsen H, Hoiby N, Döring G (1989) Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function. APMIS 97: 1068–1072

    Article  CAS  Google Scholar 

  15. Jensen PO, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H, Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Hoiby N (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    Article  CAS  PubMed  Google Scholar 

  16. Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508

    Article  CAS  PubMed  Google Scholar 

  17. Van Gennip M, Christensen LD, Alhede M, Phipps R, Jensen PO, Christophersen L, Pamp SJ, Moser C, Mikkelsen PJ, Koh AY, Tolker-Nielsen T, Pier GB, Hoiby N, Givskov M, Bjarnsholt T (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117:537–546

    Article  PubMed  CAS  Google Scholar 

  18. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyl transferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    Article  CAS  PubMed  Google Scholar 

  19. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caiazza NC, Shanks RM, O'Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Déziel E, Lépine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa : 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  PubMed  CAS  Google Scholar 

  23. Köhler T, Curty LK, Barja F, Van Delden C, Pechère J-C (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tremblay J, Richardson AP, Lepine F, Deziel E (2007) Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environ Microbiol 9: 2622–2630

    Article  CAS  PubMed  Google Scholar 

  25. Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Deziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192: 2973–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schooling SR, Charaf UK, Allison DG, Gilbert P (2004) A role for rhamnolipid in biofilm dispersion. Biofilms 1:91–99

    Article  Google Scholar 

  29. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  PubMed  Google Scholar 

  30. Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nitschke M, Costa SGVAO, Contiero J (2011) Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46: 621–630

    Article  CAS  Google Scholar 

  32. Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E (2011) Rhamnolipids: detection, characterization, biosynthesis, genetic regulation and bioengineering of production. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications, 1st edn. Springer, Berlin, pp 13–55

    Chapter  Google Scholar 

  33. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Article  PubMed  Google Scholar 

  34. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S (2008) Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 391:1579–1590

    Article  CAS  PubMed  Google Scholar 

  35. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Meth 13:271–279

    Article  Google Scholar 

  36. Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  37. Chandrasekaran EV, BeMiller JN (1980) Constituent analysis of glucosaminoglycans. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic Press, Inc., New York, pp 89–96

    Google Scholar 

  38. Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C 40:61–67

    Article  CAS  PubMed  Google Scholar 

  39. Schenk T, Schuphan I, Schmidt B (1995) High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa. J Chromatogr A 693:7–13

    Article  CAS  PubMed  Google Scholar 

  40. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152

    Article  PubMed  Google Scholar 

  41. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  CAS  PubMed  Google Scholar 

  42. Lépine F, Déziel E, Milot S, Villemur R (2002) Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectr 37:41–46

    Article  CAS  Google Scholar 

  43. Dubeau D, Déziel E, Woods DE, Lépine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Déziel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Abdel-Mawgoud, A.M., Lépine, F., Déziel, E. (2014). Liquid Chromatography/Mass Spectrometry for the Identification and Quantification of Rhamnolipids. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics