Skip to main content

In vitro Assays to Monitor the Activity of Pseudomonas aeruginosa Type III Secreted Proteins

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Pseudomonas aeruginosa secretes numerous toxins and destructive enzymes that play distinct roles in pathogenesis. The Type III secretion system (T3SS) of Pseudomonas is a system that delivers a subset of toxins directly into the cytoplasm of eukaryotic cells. The secreted effectors include ExoS, ExoT, ExoU, and ExoY. In this chapter, we describe methods to induce T3S expression and measure the enzymatic activities of each effector in in vitro assays. ExoU is a phospholipase and its activity can be measured in a fluorescence-based assay monitoring the cleavage of the fluorogenic substrate, PED6. ExoS and ExoT both possess ADP-ribosyltransferase (ADPRT) and GTPase-activating protein (GAP) activity. ADPRT activity can be assessed by using radiolabeled nicotinamide adenine dinucleotide (NAD+) and measuring the covalent incorporation of ADP-ribose into a target protein. GAP activity is measured by the release of radiolabeled phosphate from [γ-32P]GTP-bound target proteins. In accordance with recent trends towards reducing the use of radioactivity in the laboratory, alternative assays using fluorescent or biotin-labeled reagents are described. ExoY is a nucleotidyl cyclase; cAMP production stimulated by ExoY can be monitored using reverse-phase HPLC or with commercially available immunological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diaz MH, Hauser AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank DW (1997) The exoenzyme S regulon of Pseudomonas aeruginosa. Mol Microbiol 26:621–629

    Article  CAS  PubMed  Google Scholar 

  3. Vallis AJ et al (1999) Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect Immun 67:914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy-Burman A et al (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774

    Article  CAS  PubMed  Google Scholar 

  5. Hauser AR et al (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 30:521–528

    Article  CAS  PubMed  Google Scholar 

  6. EL-Solh AA (2012) Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 40:1157–1163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sawa T et al (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5:392–398

    Article  CAS  PubMed  Google Scholar 

  8. Kurahashi K et al (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allewelt M et al (2000) Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68:3998–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holder IA, Neely AN, Frank DW (2001) Type III secretion/intoxication system important in virulence of Pseudomonas aeruginosa infections in burns. Burns 27:129–130

    Article  CAS  PubMed  Google Scholar 

  11. Jain M et al (2004) Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42:5229–5237

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yahr TL, Wolfgang MC (2006) Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 62:631–640

    Article  CAS  PubMed  Google Scholar 

  13. King JM et al (2012) Orientation of Pseudomonas aeruginosa ExsA monomers bound to promoter DNA and base-specific contacts with the P(exoT) promoter. J Bacteriol 194:2573–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iglewski BH et al (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphosphate ribosyltransferase distinct from toxin A. Proc Natl Acad Sci USA 75:3211–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson MR et al (1980) Exoenzyme S: an ADP-ribosyltransferase produced by Pseudomonas aeruginosa. In: Sugimura T, Smulson M (eds) Novel ADP-ribosylation of regulatory enzymes and proteins. Elsevier/North-Holland, Amsterdam, pp 425–433

    Google Scholar 

  16. Dacheux D et al (1999) Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infect Immun 67:6164–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCaw ML et al (2002) ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol 46:1123–1133

    Article  CAS  PubMed  Google Scholar 

  18. Kim J et al (2005) Factors triggering type III secretion in Pseudomonas aeruginosa. Microbiology 151:3575–3587

    Article  CAS  PubMed  Google Scholar 

  19. Nicas TI, Iglewski BH (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45:470–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hauser AR, Kang PJ, Engel JN (1998) PepA, a secreted protein of Pseudomonas aeruginosa, is necessary for cytotoxicity and virulence. Mol Microbiol 27:807–818

    Article  CAS  PubMed  Google Scholar 

  21. Sato H et al (2003) The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 22:2959–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phillips RM et al (2003) In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem 278:41326–41332

    Article  CAS  PubMed  Google Scholar 

  23. Tamura M et al (2004) Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Commun 316:323–331

    Article  CAS  PubMed  Google Scholar 

  24. Finck-Barbançon V et al (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557

    Article  PubMed  Google Scholar 

  25. Finck-Barbançon V, Frank DW (2001) Multiple domains are required for the toxic activity of Pseudomonas aeruginosa ExoU. J Bacteriol 183:4330–4344

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pankhaniya RR et al (2004) Pseudomonas aeruginosa causes acute lung injury via the catalytic activity of the patatin-like phospholipase domain of ExoU. Crit Care Med 32:2293–2299

    Article  CAS  PubMed  Google Scholar 

  27. Shaver CM, Hauser AR (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee VT et al (2005) Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 73:1695–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schulert GS et al (2003) Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 188:1695–1706

    Article  CAS  PubMed  Google Scholar 

  30. Sato H, Feix JB, Frank DW (2006) Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. Biochemistry 45:10368–10375

    Article  CAS  PubMed  Google Scholar 

  31. Benson MA, Schmalzer KM, Frank DW (2010) A sensitive fluorescence-based assay for the detection of ExoU-mediated PLA2 activity. Clin Chim Acta 411:190–197

    Article  CAS  PubMed  Google Scholar 

  32. Stirling FR et al (2006) Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin. Cell Microbiol 8:1294–1309

    Article  CAS  PubMed  Google Scholar 

  33. Anderson DM et al (2011) Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa T3SS cytotoxin, ExoU. Mol Microbiol 82:1454–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yahr TL, Barbieri JT, Frank DW (1996) Genetic relationship between the 53- and 49-kilodalton forms of exoenzyme S from Pseudomonas aeruginosa. J Bacteriol 178:1412–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganesan AK et al (1998) Pseudomonas aeruginosa exoenzyme S ADP-ribosylates Ras at multiple sites. J Biol Chem 273:7332–7337

    Article  CAS  PubMed  Google Scholar 

  36. Goehring UM et al (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    Article  CAS  PubMed  Google Scholar 

  37. Krall R et al (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kazmierczak BI, Engel JN (2002) Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect Immun 70:2198–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 278:32794–32800

    Article  CAS  PubMed  Google Scholar 

  40. Henriksson ML et al (2002) Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo. Biochem J 367:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pederson KJ et al (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401

    Article  CAS  PubMed  Google Scholar 

  42. Rocha CL et al (2003) Characterization of Pseudomonas aeruginosa exoenzyme S as a bifunctional enzyme in J774A.1 macrophages. Infect Immun 71:5296–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krall R et al (2002) In vivo Rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 70:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deng Q, Barbieri JT (2008) Modulation of host cell endocytosis by the type III cytotoxin, Pseudomonas ExoS. Traffic 9:1948–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garrity-Ryan L et al (2000) The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68:7100–7113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Coburn J et al (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266:6438–6446

    Article  CAS  PubMed  Google Scholar 

  47. Fu H, Coburn J, Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci USA 90:2320–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu S et al (1997) Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J Bacteriol 179:1609–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L et al (1999) Residues of 14-3-3 zeta required for activation of exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38:12159–12164

    Article  CAS  PubMed  Google Scholar 

  50. Coburn J et al (1989) Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57:996–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coburn J et al (1989) Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264:9004–9008

    Article  CAS  PubMed  Google Scholar 

  52. Coburn J, Gill DM (1991) ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun 59:4259–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Riese MJ, Wittinghofer A, Barbieri JT (2001) ADP ribosylation of Arg41 of Rap by ExoS inhibits the ability of Rap to interact with its guanine nucleotide exchange factor, C3G. Biochemistry 40:3289–3294

    Article  CAS  PubMed  Google Scholar 

  54. Barbieri AM et al (2001) ADP-ribosylation of Rab5 by ExoS of Pseudomonas aeruginosa affects endocytosis. Infect Immun 69:5329–5334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maresso AW, Baldwin MR, Barbieri JT (2004) Ezrin/Radixin/Moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J Biol Chem 279:38402–38408

    Article  CAS  PubMed  Google Scholar 

  56. Pederson KJ, Barbieri JT (1998) Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells. Mol Microbiol 30:751–759

    Article  CAS  PubMed  Google Scholar 

  57. Jia J et al (2003) c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 71:3361–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alaoui-El-Azher M et al (2006) ExoS of Pseudomonas aeruginosa induces apoptosis through a Fas receptor/caspase 8-independent pathway in HeLa cells. Cell Microbiol 8:326–338

    Article  CAS  PubMed  Google Scholar 

  59. Galle M et al (2008) The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1beta maturation. J Cell Mol Med 12:1767–1776

    Article  CAS  PubMed  Google Scholar 

  60. Garrity-Ryan L et al (2004) The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 72:546–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vance RE, Rietsch A, Mekalanos JJ (2005) Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 73:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ochoa CD et al (2012) Pseudomonas aeruginosa Exotoxin Y is a promiscuous cyclase that increases endothelial Tau phosphorylation and permeability. J Biol Chem 287:25407–25418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yahr TL et al (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci USA 95:13899–13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vallis AJ et al (1999) Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67:2040–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cowell BA, Evans DJ, Fleiszig SMJ (2005) Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol Lett 250:71–76

    Article  CAS  PubMed  Google Scholar 

  66. Sayner SL et al (2004) Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circ Res 95:196–203

    Article  CAS  PubMed  Google Scholar 

  67. Sayner SL et al (2011) Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. AJP Lung Cell Mol Physiol 301:L117–L124

    Article  CAS  Google Scholar 

  68. Beste KY et al (2012) Nucleotidyl cyclase activity of soluble guanylyl cyclase α1β1. Biochemistry 51:194–204

    Article  CAS  PubMed  Google Scholar 

  69. Kulich SM, Frank DW, Barbieri JT (1993) Purification and characterization of exoenzyme S from Pseudomonas aeruginosa 388. Infect Immun 61:307–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masters SC et al (1999) Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38:5216–5221

    Article  CAS  PubMed  Google Scholar 

  71. Xu Y, Barbieri JT (1995) Pertussis toxin-mediated ADP-ribosylation of target proteins in Chinese hamster ovary cells involves a vesicle trafficking mechanism. Infect Immun 63:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu PV (1973) Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis 128:506–513

    Article  CAS  PubMed  Google Scholar 

  73. Schmalzer KM, Benson MA, Frank DW (2010) Activation of ExoU phospholipase activity requires specific C-terminal regions. J Bacteriol 192:1801–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Riese MJ et al (2002) Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. J Biol Chem 277:12082–12088

    Article  CAS  PubMed  Google Scholar 

  75. Sato H et al (2005) Characterization of phospholipase activity of the Pseudomonas aeruginosa type III cytotoxin, ExoU. J Bacteriol 187:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rabin SDP, Hauser AR (2005) Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun 73:573–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hemsath L et al (2005) An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol Cell 20:313–324

    Article  CAS  PubMed  Google Scholar 

  78. Rocha CL et al (2005) Examination of the coordinate effects of Pseudomonas aeruginosa ExoS on Rac1. Infect Immun 73:5458–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnoldo A et al (2008) Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen. PLoS Genet 4:e1000005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Castagnini M et al (2012) Arginine-specific mono ADP-ribosylation in vitro of antimicrobial peptides by ADP-ribosylating toxins. PLoS One 7:e41417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dara W. Frank Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rolsma, S.L., Frank, D.W. (2014). In vitro Assays to Monitor the Activity of Pseudomonas aeruginosa Type III Secreted Proteins. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics