Advertisement

Aldonolactone Oxidoreductases

  • Nicole G. H. Leferink
  • Willem J. H. van BerkelEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1146)

Abstract

Vitamin C is a widely used vitamin. Here we review the occurrence and properties of aldonolactone oxidoreductases, an important group of flavoenzymes responsible for the ultimate production of vitamin C and its analogs in animals, plants, and single-cell organisms.

Key words

Aldonolactone Ascorbic acid Dehydrogenase Flavoenzyme Oxidase Vitamin C 

References

  1. 1.
    Joosten V, van Berkel WJH (2007) Flavoenzymes. Curr Opin Chem Biol 11:195–202CrossRefPubMedGoogle Scholar
  2. 2.
    Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics – a genomic and structural view on flavin-dependent proteins. FEBS J 278:2625–2634CrossRefPubMedGoogle Scholar
  3. 3.
    Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406CrossRefPubMedGoogle Scholar
  4. 4.
    Chatterjee IB (1973) Evolution and the biosynthesis of ascorbic acid. Science 182:1271–1272CrossRefPubMedGoogle Scholar
  5. 5.
    Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314CrossRefPubMedGoogle Scholar
  6. 6.
    Salusjärvi T, Kalkkinen N, Miasnikov AN (2004) Cloning and characterization of gluconolactone oxidase of Penicillium cyaneo-fulvum ATCC 10431 and evaluation of its use for production of d-erythorbic acid in recombinant Pichia pastoris. Appl Environ Microbiol 70:5503–5510PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Hancock RD, Viola R (2002) Biotechnological approaches for L ascorbic acid production. Trends Biotechnol 20:299–305CrossRefPubMedGoogle Scholar
  8. 8.
    Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355CrossRefGoogle Scholar
  9. 9.
    Hancock RD, Viola R (2001) The use of micro-organisms for l-ascorbic acid production: current status and future perspectives. Appl Microbiol Biotechnol 56:567CrossRefPubMedGoogle Scholar
  10. 10.
    Linster CL, van Schaftingen E (2007) Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22CrossRefPubMedGoogle Scholar
  11. 11.
    Smirnoff N (2001) l-Ascorbic acid biosynthesis. Vitam Horm 61:241–266CrossRefPubMedGoogle Scholar
  12. 12.
    Burns JJ, Moltz A, Peyser P (1956) Missing step in guinea pigs required for the biosynthesis of L ascorbic acid. Science 124:1148–1149CrossRefPubMedGoogle Scholar
  13. 13.
    Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577CrossRefPubMedGoogle Scholar
  14. 14.
    Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369CrossRefPubMedGoogle Scholar
  15. 15.
    Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Plant J 30:541–553CrossRefPubMedGoogle Scholar
  16. 16.
    Mapson LW, Isherwood FA, Chen YT (1954) Biological synthesis of L ascorbic acid: the conversion of L galactono-γ-lactone into L ascorbic acid by plant mitochondria. Biochem J 56:21–28PubMedCentralPubMedGoogle Scholar
  17. 17.
    Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D galacturonic acid reductase. Nat Biotechnol 21:177–181CrossRefPubMedGoogle Scholar
  18. 18.
    Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S (2010) The contribution of Arabidopsis homologs of L gulono-1,4 lactone oxidase to the biosynthesis of ascorbic acid. Biosci Biotechnol Biochem 74:1494–1497CrossRefPubMedGoogle Scholar
  20. 20.
    Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathway via D galacturonate/L galactonate is significant for ascorbate biosynthesis in Euglena gracilis: Identification and functional characterization of aldonolactonase. J Biol Chem 283:31133–31141PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Wilkinson SR, Prathalingam SR, Taylor MC, Horn D, Kelly JM (2005) Vitamin C biosynthesis in trypanosomes: a role for the glycosome. Proc Natl Acad Sci U S A 102:11645–11650PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Logan FJ, Taylor MC, Wilkinson SR, Kaur H, Kelly JM (2007) The terminal step in vitamin C biosynthesis in Trypanosoma cruzi is mediated by a FMN dependent galactonolactone oxidase. Biochem J 407:419–426PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Biyani N, Madhubala R (2011) Leishmania donovani encodes a functional enzyme involved in vitamin C biosynthesis: arabino-1,4-lactone oxidase. Mol Biochem Parasitol 180:76–85CrossRefPubMedGoogle Scholar
  24. 24.
    Takahashi T, Yamashita H, Kato E, Mitsumoto M, Murakawa S (1976) Purification and some properties of D glucono-γ-lactone dehydrogenase: D erythorbic acid producing enzyme of Penicillium cyaneo-fulvum. Agr Biol Chem 40:121–129CrossRefGoogle Scholar
  25. 25.
    Harada Y, Shimizu M, Murakawa S, Takahashi T (1979) Identification of FAD of D gluconolactone dehydrogenase: d-erythorbic acid producing enzyme of Penicillium cyaneo-fulvum. Agr Biol Chem 43:2635–2636CrossRefGoogle Scholar
  26. 26.
    Amako K, Fujita K, Shimohata T-A, Hasegawa E, Kishimoto R, Goda K (2006) NAD+ specific D arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. FEBS Lett 580:6428–6434CrossRefPubMedGoogle Scholar
  27. 27.
    Huh WK, Lee BH, Kim ST, Kim YR, Rhie GE, Baek YW, Hwang CS, Lee JS, Kang SO (1998) D erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol Microbiol 30:895–903CrossRefPubMedGoogle Scholar
  28. 28.
    Fraaije MW, Benen JAE, Visser J, Mattevi A, van Berkel WJH (1998) A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends Biochem Sci 23:206–207CrossRefPubMedGoogle Scholar
  29. 29.
    Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474:292–301CrossRefPubMedGoogle Scholar
  30. 30.
    Nishikimi M (1979) L Gulono-γ-lactone oxidase (rat and goat liver). Methods Enzymol 62:24–30CrossRefPubMedGoogle Scholar
  31. 31.
    Kiuchi K, Nishikimi M, Yagi K (1982) Purification and characterization of L gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21:5076–5082CrossRefPubMedGoogle Scholar
  32. 32.
    Puskas F, Braun L, Csala M, Kardon T, Marcolongo P, Benedetti A, Mandl J, Banhegyi G (1998) Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296CrossRefPubMedGoogle Scholar
  33. 33.
    Kenney WC, Edmondson DE, Singer TP (1976) Identification of the covalently bound flavin of l-gulono-γ-lactone oxidase. Biochem Biophys Res Commun 71:1194–1200CrossRefPubMedGoogle Scholar
  34. 34.
    Nakagawa H, Asano A (1970) Ascorbate synthesizing system in rat liver microsomes. I. Gulonolactone-reducible pigment as a prosthetic group of gulonolactone oxidase. J Biochem 68:737–746PubMedGoogle Scholar
  35. 35.
    Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-γ-lactone oxidase, the enzyme for L ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688PubMedGoogle Scholar
  36. 36.
    Nishikimi M, Noguchi E, Yagi K (1978) Occurrence in yeast of L galactonolactone oxidase which is similar to a key enzyme for ascorbic acid biosynthesis in animals, L gulonolactone oxidase. Arch Biochem Biophys 191:479–486CrossRefPubMedGoogle Scholar
  37. 37.
    Bleeg HS, Christensen F (1982) Biosynthesis of ascorbate in yeast. Purification of L galactono-1,4-lactone oxidase with properties different from mammalian L gulonolactone oxidase. Eur J Biochem 127:391–396CrossRefPubMedGoogle Scholar
  38. 38.
    Huh WK, Kim ST, Yang KS, Seok YJ, Hah YC, Kang SO (1994) Characterisation of D arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. Eur J Biochem 225:1073–1079CrossRefPubMedGoogle Scholar
  39. 39.
    Kenney WC, Edmondson DE, Singer TP, Nishikimi M, Noguchi E, Yagi K (1979) Identification of the covalently-bound flavin of L galactonolactone oxidase from yeast. FEBS Lett 97:40–42CrossRefPubMedGoogle Scholar
  40. 40.
    Wolucka BA, Communi D (2006) Mycobacterium tuberculosis possesses a functional enzyme for the synthesis of vitamin C, L gulono-1,4-lactone dehydrogenase. FEBS J 273:4435–4445CrossRefPubMedGoogle Scholar
  41. 41.
    Smith AG, Croft MT, Moulin M, Webb ME (2007) Plants need their vitamins too. Curr Opin Plant Biol 10:266–275CrossRefPubMedGoogle Scholar
  42. 42.
    Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 1604:159–169CrossRefPubMedGoogle Scholar
  43. 43.
    Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L galactono-1,4-lactone dehydrogenase (l-GalLDH) affects plant and fruit development in tomato. Plant Physiol 145:1408–1422PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Pineau B, Layoune O, Danon A, De Paepe R (2008) l-Galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505CrossRefPubMedGoogle Scholar
  45. 45.
    Mapson LW, Breslow E (1958) Biological synthesis of ascorbic acid: L galactono-γ-lactone dehydrogenase. Biochem J 68:395–406PubMedCentralPubMedGoogle Scholar
  46. 46.
    Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1995) Subcellular localization and properties of l-galactono-γ-lactone dehydrogenase in spinach leaves. Biosci Biotechnol Biochem 59:1983–1984CrossRefGoogle Scholar
  47. 47.
    Ôba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124PubMedGoogle Scholar
  48. 48.
    Østergaard J, Persiau G, Davey MW, Bauw G, van Montagu M (1997) Isolation of a cDNA coding for L galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016CrossRefPubMedGoogle Scholar
  49. 49.
    Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Ôba K, Hirai M (1998) l-Galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358CrossRefPubMedGoogle Scholar
  50. 50.
    Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675CrossRefPubMedGoogle Scholar
  51. 51.
    Leferink NGH, van den Berg WAM, van Berkel WJH (2008) L Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275:713–726CrossRefPubMedGoogle Scholar
  52. 52.
    Lederer F (1978) Sulfite binding to a flavodehydrogenase, cytochrome b2 from baker’s yeast. Eur J Biochem 88:425–431CrossRefPubMedGoogle Scholar
  53. 53.
    Fraaije MW, Mattevi A (2000) Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 25:126–132CrossRefPubMedGoogle Scholar
  54. 54.
    Mewies M, McIntire WS, Scrutton NS (1998) Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs. Protein Sci 7:7–20PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Forneris F, Heuts DPHM, Delvecchio M, Rovida S, Fraaije MW, Mattevi A (2008) Structural analysis of the catalytic mechanism and stereoselectivity in Streptomyces coelicolor alditol oxidase. Biochemistry 47:978–985CrossRefPubMedGoogle Scholar
  56. 56.
    Coulombe R, Yue KQ, Ghisla S, Vrielink A (2001) Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J Biol Chem 276:30435–30441CrossRefPubMedGoogle Scholar
  57. 57.
    Leferink NGH, Jose MF, van den Berg WAM, van Berkel WJH (2009) Functional assignment of Glu386 and Arg388 in the active site of l-galactono-γ-lactone dehydrogenase. FEBS Lett 583:3199–3203CrossRefPubMedGoogle Scholar
  58. 58.
    Leferink NGH, van Duijn E, Barendregt A, Heck AJR, van Berkel WJH (2009) Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C. Plant Physiol 150:596–605PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898CrossRefPubMedGoogle Scholar
  60. 60.
    Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728CrossRefPubMedGoogle Scholar
  61. 61.
    Navrot N, Rouhier N, Gelhaye E, Jacquot J-P (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195CrossRefGoogle Scholar
  62. 62.
    Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154CrossRefPubMedGoogle Scholar
  63. 63.
    Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269:22459–22462PubMedGoogle Scholar
  64. 64.
    Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283CrossRefPubMedGoogle Scholar
  65. 65.
    Baron R, Rileya C, Chenprakhon P, Thotsaporn K, Winter RT, Alfieri A, Forneris F, van Berkel WJH, Chaiyen P, Fraaije MW, Mattevi A, McCammon JA (2009) Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proc Natl Acad Sci U S A 106:10603–10608PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Vrielink A, Ghisla S (2009) Cholesterol oxidase: biochemistry and structural features. FEBS J 276:6826–6843CrossRefPubMedGoogle Scholar
  67. 67.
    Finnegan S, Agniswamy J, Weber IT, Gadda G (2010) Role of valine 464 in the flavin oxidation reaction catalyzed by choline oxidase. Biochemistry 49:2952–2961CrossRefPubMedGoogle Scholar
  68. 68.
    Jorns MS, Chen Z, Scott Mathews F (2010) Structural characterization of mutations at the oxygen activation site in monomeric sarcosine oxidase. Biochemistry 49:3631–3639PubMedCentralCrossRefPubMedGoogle Scholar
  69. 69.
    Spadiut O, Tan T-C, Pisanelli I, Haltrich D, Divne C (2010) Importance of the gating segment in the substrate-recognition loop of pyranose 2 oxidase. FEBS J 277:2892–2909CrossRefPubMedGoogle Scholar
  70. 70.
    Saam J, Rosini E, Molla G, Schulten K, Pollegioni L, Ghisla S (2010) Oxygen reactivity of flavoproteins. J Biol Chem 285:24439–24446PubMedCentralCrossRefPubMedGoogle Scholar
  71. 71.
    Rosini E, Molla G, Ghisla S, Pollegioni L (2011) On the reaction of D amino acid oxidase with dioxygen: oxygen diffusion pathways and enhancement of reactivity. FEBS J 278:482–492CrossRefPubMedGoogle Scholar
  72. 72.
    Bruckner RC, Winans J, Jorns MS (2011) Pleiotropic impact of a single lysine mutation on biosynthesis of and catalysis by N methyltryptophan oxidase. Biochemistry 50:4949–4962PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Kommoju P-R, Chen Z, Bruckner RC, Scott Mathews F, Jorns MS (2011) Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate. Biochemistry 50:5521–5534PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Hernandez-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT (2011) Modulating oxygen reactivity in a fungal flavoenzyme. J Biol Chem 286:41105–41114PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Kuipers RK, Joosten HJ, Verwiel E, Paans S, Akerboom J, van der Oost J, Leferink NG, van Berkel WJH, Vriend G, Schaap PJ (2009) Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins 76:608–616CrossRefPubMedGoogle Scholar
  76. 76.
    Leferink NGH, Fraaije MW, Joosten HJ, Schaap PJ, Mattevi A, van Berkel WJH (2009) Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J Biol Chem 284:4392–4397CrossRefPubMedGoogle Scholar
  77. 77.
    Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R (2008) Insights into the redox biology of Trypanosoma cruzi: trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 45:733–742CrossRefPubMedGoogle Scholar
  78. 78.
    Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248CrossRefPubMedGoogle Scholar
  79. 79.
    Wilkinson SR, Obado SO, Mauricio IL, Kelly JM (2002) Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc Natl Acad Sci U S A 99:13453–13458PubMedCentralCrossRefPubMedGoogle Scholar
  80. 80.
    Castro H, Tomás AM (2008) Peroxidases of trypanosomatids. Antioxid Redox Signal 10:1593–1606CrossRefPubMedGoogle Scholar
  81. 81.
    Kudryashova EV, Leferink NGH, Slot IGM, van Berkel WJH (2011) Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C. Biochim Biophys Acta 1814:545–552CrossRefPubMedGoogle Scholar
  82. 82.
    Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nicole G. H. Leferink
    • 1
  • Willem J. H. van Berkel
    • 1
    Email author
  1. 1.Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands

Personalised recommendations