Skip to main content

Modification of HSV-1 to an Oncolytic Virus

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1144))

Abstract

Cancer-permissive viruses or oncolytic viruses consist of either genetically engineered or naturally occurring strains that possess relatively selective replicative and/or infection abilities for cancer vs. normal cells (Chiocca, Nat Rev Cancer 2: 938–950, 2002). They can also be armed with additional anticancer cDNAs (e.g., cytokines, prodrug-activating, anti-angiogenesis genes, and others) to extend therapeutic effects (Kaur et al., Curr Gene Ther 9: 341–355, 2009). Herpes simplex virus type 1 (HSV-1) possesses several advantages as an oncolytic virus such as a rapid lytic cycle and a large capacity for insertion of heterologous DNA sequences (Wade-Martins et al., Nat Biotechnol, 19: 1067–1070, 2001). However, the technical nuances of genetic manipulation of the HSV-1 genome may still be relatively challenging. Here, we describe a system that has been durable and consistent in providing the ability to generate multiple recombinant HSV-1. The HsvQuik technology utilizes an HSV-1 genome cloned in a bacterial artificial chromosome to recombine heterologous cDNAs in a relatively rapid and reliable manner (Terada et al., Gene Ther 13: 705–714, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiocca EA (2002) Oncolytic viruses. Nat Rev Cancer 2:938–950

    Article  PubMed  CAS  Google Scholar 

  2. Kaur B, Cripe TP, Chiocca EA (2009) “Buy one get one free”: armed viruses for the treatment of cancer cells and their microenvironment. Curr Gene Ther 9:341–355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19:1067–1070

    Article  PubMed  CAS  Google Scholar 

  4. Terada K, Wakimoto H, Tyminski E, Chiocca EA, Saeki Y (2006) Development of a rapid method to generate multiple oncolytic HSV vectors and their in vivo evaluation using syngeneic mouse tumor models. Gene Ther 13:705–714

    Article  PubMed  CAS  Google Scholar 

  5. Boehmer PE, Villani G (2003) Herpes simplex virus type-1: a model for genome transactions. Prog Nucleic Acid Res Mol Biol 75:139–171

    Article  PubMed  CAS  Google Scholar 

  6. Weller SK, Coen DM (2012) Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol 4:a013011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kramm CM, Chase M, Herrlinger U, Jacobs A, Pechan PA, Rainov NG, Sena-Esteves M, Aghi M, Barnett FH, Chiocca EA, Breakefield XO (1997) Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 8:2057–2068

    Article  PubMed  CAS  Google Scholar 

  8. Toda M, Rabkin SD, Kojima H, Martuza RL (1999) Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 10: 385–393

    Article  PubMed  CAS  Google Scholar 

  9. Todo T, Rabkin SD, Sundaresan P, Wu A, Meehan KR, Herscowitz HB, Martuza RL (1999) Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther 10:2741–2755

    Article  PubMed  CAS  Google Scholar 

  10. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, Palmer CA, Feigenbaum F, Tornatore C, Tufaro F, Martuza RL (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–874

    Article  PubMed  CAS  Google Scholar 

  11. Smith KD, Mezhir JJ, Bickenbach K, Veerapong J, Charron J, Posner MC, Roizman B, Weichselbaum RR (2006) Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1. J Virol 80:1110–1120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Aghi M, Visted T, Depinho RA, Chiocca EA (2008) Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16. Oncogene 27:4249–4254

    Article  PubMed  CAS  Google Scholar 

  13. Kambara H, Okano H, Chiocca EA, Saeki Y (2005) An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 65: 2832–2839

    Article  PubMed  CAS  Google Scholar 

  14. Chung RY, Saeki Y, Chiocca EA (1999) B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 73:7556–7564

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Uchida H, Marzulli M, Nakano K, Goins WF, Chan J, Hong CS, Mazzacurati L, Yoo JY, Haseley A, Nakashima H, Baek H, Kwon H, Kumagai I, Kuroki M, Kaur B, Chiocca EA, Grandi P, Cohen JB, Glorioso JC (2013) Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther J Am Soc Gene Ther 21:561–569

    Article  CAS  Google Scholar 

  16. Tyminski E, Leroy S, Terada K, Finkelstein DM, Hyatt JL, Danks MK, Potter PM, Saeki Y, Chiocca EA (2005) Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res 65: 6850–6857

    Article  PubMed  CAS  Google Scholar 

  17. Chase M, Chung RY, Chiocca EA (1998) An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol 16:444–448

    Article  PubMed  CAS  Google Scholar 

  18. Hardcastle J, Kurozumi K, Dmitrieva N, Sayers MP, Ahmad S, Waterman P, Weissleder R, Chiocca EA, Kaur B (2010) Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol Ther J Am Soc Gene Ther 18:285–294

    Article  CAS  Google Scholar 

  19. Dmitrieva N, Yu L, Viapiano M, Cripe TP, Chiocca EA, Glorioso JC, Kaur B (2011) Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res Off J Am Assoc Cancer Res 17:1362–1372

    Article  CAS  Google Scholar 

  20. Chou J, Kern ER, Whitley RJ, Roizman B (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250:1262–1266

    Article  PubMed  CAS  Google Scholar 

  21. Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35

    Article  PubMed  CAS  Google Scholar 

  22. Stalker DM, Filutowicz M, Helinski DR (1983) Release of initiation control by a mutational alteration in the R6K pi protein required for plasmid DNA replication. Proc Natl Acad Sci U S A 80:5500–5504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Posfai G, Koob MD, Kirkpatrick HA, Blattner FR (1997) Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome. J Bacteriol 179:4426–4428

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Saeki Y, Fraefel C, Ichikawa T, Breakefield XO, Chiocca EA (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther J Am Soc Gene Ther 3:591–601

    Article  CAS  Google Scholar 

  25. Araki K, Araki M, Miyazaki J, Vassalli P (1995) Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc Natl Acad Sci U S A 92: 160–164

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Li LP, Schlag PM, Blankenstein T (1997) Transient expression of SV 40 large T antigen by Cre/LoxP-mediated site-specific deletion in primary human tumor cells. Hum Gene Ther 8:1695–1700

    Article  PubMed  CAS  Google Scholar 

  27. Green MR, Sambrook J, Sambrook J (2012) Molecular cloning : a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Antonio Chiocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nakashima, H., Chiocca, E.A. (2014). Modification of HSV-1 to an Oncolytic Virus. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus. Methods in Molecular Biology, vol 1144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0428-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0428-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0427-3

  • Online ISBN: 978-1-4939-0428-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics