Skip to main content

Zebrafish Brain Development Monitored by Long-Term In Vivo Microscopy: A Comparison Between Laser Scanning Confocal and 2-Photon Microscopy

  • Protocol
  • First Online:
Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue

Part of the book series: Neuromethods ((NM,volume 87))

  • 1239 Accesses

Abstract

Zebrafish is an attractive model organism to study vertebrate brain development. Its transparency makes it possible to follow development using live imaging. In a transgenic line where a subset of neurons is labeled by GFP expression, their migration, proliferation and the extension of axons can be observed by laser scanning confocal microscopy (LSCM) or 2-photon microscopy (2PM). However, when the whole brain is imaged, LSCM might result in phototoxicity. In contrast, 2PM allows for image acquisition over several days at intervals shorter than an hour. In this article, we describe a method to image a large region of the brain (500 × 500 μm) spanning 300 μm in depth by 2PM over 2 days or more. The results are compared with those obtained by the more widespread LSCM. Visualization and analysis of the resulting data is challenging, as they exceed the size that can be loaded into standard rendering software. We propose a routine to reduce the size by maximum projection while keeping and displaying three-dimensional information by a color code within ImageJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gan WB, Grutzendler J, Wong WT et al (2000) Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27:219–225

    Article  CAS  PubMed  Google Scholar 

  2. Young P, Feng G (2004) Labeling neurons in vivo for morphological and functional studies. Curr Opin Neurobiol 14:642–646. doi:10.1016/j.conb.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  3. Köster RW, Fraser SE (2004) Time-lapse microscopy of brain development. Methods Cell Biol 76:207–235

    Article  PubMed  Google Scholar 

  4. Jiang YJ, Brand M, Heisenberg CP et al (1996) Mutations affecting neurogenesis and brain morphology in the zebrafish, Danio rerio. Development 123:205–216

    CAS  PubMed  Google Scholar 

  5. Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  6. Köster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233:329–346

    Article  PubMed  Google Scholar 

  7. Pan YA, Livet J, Sanes JR et al (2011) Multicolor Brainbow imaging in zebrafish. Cold Spring Harb Protoc 2011:pdb.prot5546. doi:10.1101/pdb.prot5546

    Article  PubMed Central  PubMed  Google Scholar 

  8. Köster RW, Fraser SE (2001) Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11:1858–1863

    Article  PubMed  Google Scholar 

  9. Lowery LA, Sive H (2005) Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development 132:2057–2067

    Article  CAS  PubMed  Google Scholar 

  10. Graeden E, Sive H (2009) Live imaging of the zebrafish embryonic brain by confocal microscopy. J Vis Exp (26):1217. doi: 10.3791/1217

  11. Amos W (2003) How the confocal laser scanning microscope entered biological research. Biol Cell 95:335–342. doi:10.1016/S0248-4900(03)00078-9

    Article  CAS  PubMed  Google Scholar 

  12. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767. doi:10.1038/11698

    Article  CAS  PubMed  Google Scholar 

  13. Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009. doi:10.1126/science. 1100035

    Google Scholar 

  14. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  CAS  PubMed  Google Scholar 

  15. Ahrens MB, Orger MB, Robson DN et al (2013) Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat Methods 10:413–420. doi:10.1038/nmeth.2434

    Article  CAS  PubMed  Google Scholar 

  16. Minsky M (1961) Microscopy Apparatus.

    Google Scholar 

  17. Pawley JB (1995) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, NY

    Book  Google Scholar 

  18. Wilson T, Sheppard C (1984) Theory and practice of scanning optical microscopy. Academic, London, pp 1–213

    Google Scholar 

  19. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    Article  CAS  PubMed  Google Scholar 

  21. Conchello J, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920–931. doi:10.1038/nmeth815

    Article  CAS  PubMed  Google Scholar 

  22. Kobat D, Durst ME, Nishimura N et al (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364

    Article  PubMed  Google Scholar 

  23. Kamei M, Weinstein BM (2005) Long-term time-lapse fluorescence imaging of developing zebrafish. Zebrafish 2:113–123. doi:10.1089/zeb.2005.2.113

    Article  PubMed  Google Scholar 

  24. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401:273–294. doi:10.1002/andp.19314010303

    Article  Google Scholar 

  25. Kaiser W, Garrett C (1961) Two-photon excitation in CaF2: Eu2+. Phys Rev Lett 7:229–231. doi:10.1103/PhysRevLett.7.229

    Article  CAS  Google Scholar 

  26. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  27. Diaspro A, Chirico G, Collini M (2005) Two-photon fluorescence excitation and related techniques in biological microscopy. Q Rev Biophys 38:97–166. doi:10.1017/S0033583505004129

    Article  CAS  PubMed  Google Scholar 

  28. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. doi:10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  29. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. doi:10.1016/j.neuron.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  30. Oheim M, Beaurepaire E, Chaigneau E et al (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    Article  CAS  PubMed  Google Scholar 

  31. Yaroslavsky AN, Schulze PC, Yaroslavsky IV et al (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073

    Article  CAS  PubMed  Google Scholar 

  32. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357

    Article  CAS  PubMed  Google Scholar 

  33. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481. doi:10.1364/JOSAB.13.000481

    Article  CAS  Google Scholar 

  34. Ahmed F, Wyckoff J, Lin EY et al (2002) GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Res 62:7166–7169

    CAS  PubMed  Google Scholar 

  35. Lawson N (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318. doi:10.1006/dbio.2002.0711

    Article  CAS  PubMed  Google Scholar 

  36. König K, So PT, Mantulin WW, Gratton E (1997) Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt Lett 22:135–136. doi:10.1016/j.biortech.2010.01.053

    Article  PubMed  Google Scholar 

  37. Beretta CA, Dross N, Guiterrez-Triana JA et al (2012) Habenula circuit development: past, present, and future. Front Neurosci 6:51. doi:10.3389/fnins.2012.00051

    Article  PubMed Central  PubMed  Google Scholar 

  38. Westerfield M (1995) The zebrafish book. The University of Oregon Press, Eugene, OR

    Google Scholar 

  39. Sheppard CJR (1986) The spatial frequency cut-off in three-dimensional imaging. Optik 72:131–133

    CAS  Google Scholar 

  40. Sheppard CJR (1986) The spatial frequency cut-off in three-dimensional imaging II. Optik 74:128–129

    Google Scholar 

  41. SVI Scientific Volume Imaging: Nyquist rate and PSF calculator.

    Google Scholar 

  42. Schneider C, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

  43. Beretta CA, Dross N, Bankhead P, Carl M (2013) The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function. Neural Dev 8:19. doi:10.1186/1749-8104-8-19

    Article  PubMed Central  PubMed  Google Scholar 

  44. Terasaki M, Dailey ME (1995) Confocal microscopy of living cells. In: Pawley JB (ed) Handbook of biology confocal microscopy, 2nd edn. Plenum Press, New York, NY, pp 327–346

    Chapter  Google Scholar 

  45. Mahou P, Zimmerley M, Loulier K et al (2012) Multicolor two-photon tissue imaging by wavelength mixing. Nat Methods 9:815–818. doi:10.1038/nmeth.2098

    Article  CAS  PubMed  Google Scholar 

  46. Thomas JL, Ochocinska MJ, Hitchcock PF, Thummel R (2012) Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod. PLoS One 7:e29128. doi:10.1371/journal.pone.0029128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dross, N., Beretta, C.A., Bankhead, P., Carl, M., Engel, U. (2014). Zebrafish Brain Development Monitored by Long-Term In Vivo Microscopy: A Comparison Between Laser Scanning Confocal and 2-Photon Microscopy. In: Bakota, L., Brandt, R. (eds) Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. Neuromethods, vol 87. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0381-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0381-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0380-1

  • Online ISBN: 978-1-4939-0381-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics