Skip to main content

Translation, Touch, and Overlap in Multi-fluorescence Confocal Laser Scanning Microscopy to Quantitate Synaptic Connectivity

  • Protocol
  • First Online:
Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue

Part of the book series: Neuromethods ((NM,volume 87))

Abstract

Imaging of cellular detail requires an imaging system that provides sufficient resolution. In a confocal laser scanning microscope (CLSM), microscope resolution (the optical component) and pixel resolution (the computer component) are extremely important issues. Microscope resolution depends on refraction inherent in the selected objective lens. The refractive properties and therefore the resolution of a lens are expressed by its numerical aperture (NA). Abbe’s equation, which includes also the wavelength of the used light, is the mathematical expression that determines optical resolution. The highest resolution is obtained using a high NA oil immersion lens where the oil has the same refractive properties as the mounting medium. As wet mounting preserves 3D better than mounting followed by drying and embedding in an organic mounting medium, a water immersion objective lens might be preferred when cultured cells are the subject of study.

Pixel size should preferably equal one half of the (radial) Abbe resolution of the optical instrument. For Nyquist sampling, the smallest feature should be at least 4 pixels wide (“Pawley’s Four”). Structures should at least be 10 pixels across to do meaningful 3D reconstruction. Image deconvolution is recommended. Colocalization of signal in a multi-fluorochrome stained specimen consists of statistical overlap of populations of pixels measured in different channels in the CLSM. Images of small biological objects that are in physical contact (“touch”) show always a small footprint area wherein imaging signals overlap. Controls are vital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Voort HTM, Valkenburg JAC, van Spronsen EA, Woldringh CL, Brakenhoff GJ (1987) Confocal microscopy in comparison with electron and conventional light microscopy. In: Hayat MA (ed) Correlative microscopy in biology. Academic, New York, NY, pp 59–81

    Google Scholar 

  2. Peter K (1906) Die methoden der rekonstruktion. Gustav Fischer Verlag, Jena, pp 1–154

    Google Scholar 

  3. Reese AM (1910) Development of the digestive canal of the American alligator. Smithsonian Misc Collections 56. Gutenberg Project. www.gutenberg.org/files/22327/22327-h/22327-h.htm

  4. Peters A, Palay SL, Webster H dF (1991) The fine structure of the nervous system: neurons and their supporting cells, 2nd edn. Oxford University Press, Oxford, pp 1–494

    Google Scholar 

  5. Rayleigh L, Strutt JW (1891) On pin-hole photography. Phil Mag 11:87–99

    Article  Google Scholar 

  6. Becker K, Jährling N, Saghafi S, Weiler R, Dodt H-U (2012) Chemical clearing and dehydration of GFP retrograde neuronal tracers which are transported over long distances. Neurosci Lett 18:25–30

    Google Scholar 

  7. Pawley JB (2006) Points, pixels and gray levels: digitizing image data. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer Science + Business Media, New York, NY, pp 59–79

    Chapter  Google Scholar 

  8. Bachmann L, Salpeter MM (1969) Resolution in electron microscope radioautography. J Cell Biol 41:1–32

    Article  PubMed  Google Scholar 

  9. Nyquist H (1928) Certain topics in telegraph transmission theory. AIEE Trans 47:617–644

    Google Scholar 

  10. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21

    Google Scholar 

  11. Rasband WS (1997–2004) ImageJ. National Institutes of Health, Bethesda, MD, USA. http://rsb.info.nih.gov/ij/

  12. Sheppard CJR, Choudhury A (1977) Image formation in the scanning microscope. Opt Acta 4:1051–1073

    Article  Google Scholar 

  13. De Bakker BS, de Jong KH, Hagoort J, Oostra RJ, Moorman AF (2012) Towards a 3-dimensional atlas of the developing human embryo: the Amsterdam experience. Reprod Toxicol 34:225–236

    Article  PubMed  Google Scholar 

  14. Zinchuk V, Grossenbacher-Zinchuk O (2009) Recent advances in quantitative colocalization analysis: focus on neuroscience. Progr Histochem Cytochem 44:125–172

    Article  CAS  Google Scholar 

  15. Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382

    Article  Google Scholar 

  16. Steinbusch HW, Verhofstad AA, Joosten HW (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Article  CAS  PubMed  Google Scholar 

  17. Seguela P, Geffard M, Buijs RM, Le Moal M (1984) Antibodies against gamma-aminobutyric acid: specificity studies and immunocytochemical results. Proc Natl Acad Sci USA 81:3888–3892

    Article  CAS  PubMed  Google Scholar 

  18. Geffard M, Buijs RM, Seguela P, Pool CW, Le Moal M (1984) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165

    Article  CAS  PubMed  Google Scholar 

  19. Joh TH, Geghman C, Reis DJ (1973) Immunochemical demonstration of increased tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine. Proc Natl Acad Sci USA 70:2767–2771

    Article  CAS  PubMed  Google Scholar 

  20. Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res 116:287–298

    Article  CAS  PubMed  Google Scholar 

  21. Kimura H, McGeer PL, Peng F, McGeer EG (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208:1057–1059

    Article  CAS  PubMed  Google Scholar 

  22. Eckenstein F, Barde Y-A, Thoenen H (1981) Production of specific antibodies to choline acetyltransferase purified from pig brain. Neuroscience 6:993–1000

    Article  CAS  PubMed  Google Scholar 

  23. Weihe E, Schäfer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164

    Article  CAS  PubMed  Google Scholar 

  24. Pickel VM, Chan J (1999) Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens. J Neurosci 19:7356–7366

    CAS  PubMed  Google Scholar 

  25. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhry FA, Reimer RJ, Bellocchio EE, Danbolt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750

    CAS  PubMed  Google Scholar 

  27. Gilmor ML, Nash NR, Roghani A, Edwards RH, Yi H, Hersch SM, Levey AI (1996) Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci 16:2179–2190

    CAS  PubMed  Google Scholar 

  28. Qian Y, Melikian HE, Rye DB, Levey AI, Blakely RD (1995) Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J Neurosci 15:1261–1274

    CAS  PubMed  Google Scholar 

  29. Boulland J-L, Jenstad M, Boekel A, Wouterlood FG, Edwards RH, Storm-Mathisen J, Chaudhry FA (2009) Vesicular glutamate and GABA transporters sort to distinct sets of vesicles at a symmetric synapse. Cerebr Cortex 19:241–248

    Article  Google Scholar 

  30. Wouterlood FG (2013) Analysis of brain projection systems using third-generation neuroanatomical tracers and multiple fluorescence laser scanning microscopy. In: Bakota L, Brandt R (eds) Laser-scanning microscopy of neuronal tissue – applications and quantitative image analysis, Neuromethods. Springer, New York, NY

    Google Scholar 

  31. Wouterlood FG, Boekel AJ, Kajiwara R, Beliën JAM (2008) Counting contacts between neurons in 3D in confocal laser scanning images. J Neurosci Meth 171:296–308

    Article  Google Scholar 

  32. Kononenko NL, Witter MP (2012) Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex. Hippocampus 22:881–895

    Article  PubMed  Google Scholar 

  33. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  34. Roysam B, Lin G, Abdul-Karim M-A, Al-Kofahi O, Al-Kofari K, Shain W, Szarowski DH, Turner JN (2006) Automated three-dimensional image analysis methods for confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer Science + Business Media, New York, NY, pp 316–337

    Chapter  Google Scholar 

  35. Wouterlood FG, Boekel AJ, Aliane V, Beliën JA, Uylings HB, Witter MP (2008) Contacts between lateral and medial perforant pathway fibers with parvalbumin expressing neurons in the subiculum of the rat. Neuroscience 156:653–661

    Article  CAS  PubMed  Google Scholar 

  36. Wouterlood FG, Böckers T, Witter MP (2003) Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of postsynaptic density proteins and target neuron-markers. J Neurosci Meth 128:129–142

    Article  CAS  Google Scholar 

  37. Baccalao R, Sohrab S, Phillips C (2006) Guiding principles of specimen preservation for confocal fluorescence microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer Science + Business Media, New York, NY, pp 368–380

    Chapter  Google Scholar 

  38. Korkotian E, Segal M (2001) Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci 1:6115–6124

    Google Scholar 

  39. Bhatt DH, Zhang S, Gan WB (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282

    Article  CAS  PubMed  Google Scholar 

  40. Spiegelhalter C, Tosch V, Hentsch D, Koch M, Kessler P, Schwab Y, Laporte J (2010) From dynamic live cell imaging to 3D ultrastructure: novel integrated methods for high pressure freezing and correlative light-electron microscopy. PLoS One 5(2):e9014. doi:10.1371/journal.pone.0009014

    Article  PubMed Central  PubMed  Google Scholar 

  41. Friedrich VL Jr, Mugnaini E (1981) Electron microscopy: preparation of neural tissues for electron microscopy. In: Heimer L, Robards MJ (eds) Neuroanatomical tract tracing methods. Plenum Press, New York, NY, pp 345–375

    Chapter  Google Scholar 

  42. Luft JH (1973) Embedding media – old and new. In: Koehler JK (ed) Advanced techniques in electron microscopy. Springer Verlag, New York, NY, pp 1–34

    Chapter  Google Scholar 

  43. Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections. J Neurosci Meth 124:45–59

    Article  Google Scholar 

  44. Wouterlood FG, Härtig W, Groenewegen HJ, Voorn P (2012) Density gradients of vesicular glutamate- and GABA transporter-immunoreactive boutons in calbindin and μ-opioid receptor-defined compartments in the rat striatum. J Comp Neurol 520:2123–2142

    Article  CAS  PubMed  Google Scholar 

  45. DeMerlis CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amber Boeve-Boekel, Danielle Versendaal, Verena Aliane, Irineu Bochaca, Robert Schuit, Jean-Luc Boulland, and Tim van Groningen for their ever-enthusiastic confocal imaging efforts and the discussions about the translational process from biological object, via laser scanning imaging, to aggregates of high-intensity voxels in a voxel matrix.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wouterlood, F.G., Beliën, J.A.M. (2014). Translation, Touch, and Overlap in Multi-fluorescence Confocal Laser Scanning Microscopy to Quantitate Synaptic Connectivity. In: Bakota, L., Brandt, R. (eds) Laser Scanning Microscopy and Quantitative Image Analysis of Neuronal Tissue. Neuromethods, vol 87. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0381-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0381-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0380-1

  • Online ISBN: 978-1-4939-0381-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics