Caspase Protocols in Mice

  • Varsha Kaushal
  • Christian Herzog
  • Randy S. Haun
  • Gur P. Kaushal
Part of the Methods in Molecular Biology book series (MIMB, volume 1133)


Members of the caspase family of proteases are evolutionarily conserved cysteine proteases that play a crucial role as the central executioners of the apoptotic pathway. Since the discovery of caspases, many methods have been developed to detect their activation and are widely used in basic and clinical studies. In a mouse tissue, caspase activation can be monitored by cleavage of caspase-specific synthetic substrates and by detecting cleaved caspase by western blot analysis of the tissue extract. In tissue sections, active caspase can be detected by immunostaining using specific antibodies to the active caspase. In addition, among the myriads of caspase-specific substrates known so far, cleaved fragments produced by caspases from the substrates such as PARP, lamin A, and cytokeratin-18 can be monitored in tissue sections by immunostaining as well as western blots of tissue extracts. In general, more than one method should be used to ascertain detection of activation of caspases in a mouse tissue.

Key words

Caspases Immunoblot Immunostaining Antibodies Tetrapeptide substrates Chromophore Homogenization Deparaffinization 



This work was supported by NIH grant R01 DK081690 and VA Merit Award to G.P.K. and VA Merit Award to R.S.H.


  1. 1.
    Hyman BT, Yuan J (2012) Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci 13:395–406PubMedCrossRefGoogle Scholar
  2. 2.
    Kuranaga E (2012) Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells 17:83–97PubMedCrossRefGoogle Scholar
  3. 3.
    Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Coleman ML, Sahai EA, Yeo M et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345PubMedCrossRefGoogle Scholar
  6. 6.
    Faleiro L, Lazebnik Y (2000) Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 151:951–959PubMedCrossRefGoogle Scholar
  7. 7.
    Luthi AU, Martin SJ (2007) The CASBAH: a searchable database of caspase substrates. Cell Death Differ 14:641–650PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedCrossRefGoogle Scholar
  9. 9.
    Darzynkiewicz Z, Pozarowski P, Lee BW et al (2011) Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 682:103–114PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Tawa P, Tam J, Cassady R et al (2001) Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ 8:30–37PubMedCrossRefGoogle Scholar
  11. 11.
    Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272:17907–17911PubMedCrossRefGoogle Scholar
  12. 12.
    Frances DE, Ingaramo PI, Mayoral R et al (2013) Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 114:669–680PubMedCrossRefGoogle Scholar
  13. 13.
    Kumar S, Allen DA, Kieswich JE et al (2009) Dexamethasone ameliorates renal ischemia-reperfusion injury. J Am Soc Nephrol 20:2412–2425PubMedCrossRefGoogle Scholar
  14. 14.
    Namura S, Zhu J, Fink K et al (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668PubMedGoogle Scholar
  15. 15.
    Lie ML, White LE, Santora RJ et al (2012) Lung T lymphocyte trafficking and activation during ischemic acute kidney injury. J Immunol 189:2843–2851PubMedCrossRefGoogle Scholar
  16. 16.
    Yin XM, Luo Y, Cao G et al (2002) Bid-mediated mitochondrial pathway is critical to ischemic neuronal apoptosis and focal cerebral ischemia. J Biol Chem 277:42074–42081PubMedCrossRefGoogle Scholar
  17. 17.
    Condorelli G, Roncarati R, Ross J Jr et al (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci U S A 98:9977–9982PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Chen J, Wang W, Zhang Q et al (2013) Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway. PLoS One 8:e56224PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Duan WR, Garner DS, Williams SD et al (2003) Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 199:221–228PubMedCrossRefGoogle Scholar
  20. 20.
    Hughes J, Gobe G (2007) Identification and quantification of apoptosis in the kidney using morphology, biochemical and molecular markers. Nephrology (Carlton) 12:452–458CrossRefGoogle Scholar
  21. 21.
    Jakob S, Corazza N, Diamantis E et al (2008) Detection of apoptosis in vivo using antibodies against caspase-induced neo-epitopes. Methods 44:255–261PubMedCrossRefGoogle Scholar
  22. 22.
    Ohsawa S, Hamada S, Yoshida H et al (2008) Caspase-mediated changes in histone H1 in early apoptosis: prolonged caspase activation in developing olfactory sensory neurons. Cell Death Differ 15:1429–1439PubMedCrossRefGoogle Scholar
  23. 23.
    Canbay A, Feldstein A, Baskin-Bey E et al (2004) The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 308:1191–1196PubMedCrossRefGoogle Scholar
  24. 24.
    Li J, Li Y, Ogle M et al (2010) DL-3-n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway. Brain Res 1359:216–226PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    You Z, Savitz SI, Yang J et al (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:1564–1573PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zhang X, Chen W, De Paiva CS et al (2011) Interferon-gamma exacerbates dry eye-induced apoptosis in conjunctiva through dual apoptotic pathways. Invest Ophthalmol Vis Sci 52:6279–6285PubMedCrossRefGoogle Scholar
  27. 27.
    Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14:66–72PubMedCrossRefGoogle Scholar
  28. 28.
    Lazebnik YA, Kaufmann SH, Desnoyers S et al (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347PubMedCrossRefGoogle Scholar
  29. 29.
    Tewari M, Quan LT, O’Rourke K et al (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809PubMedCrossRefGoogle Scholar
  30. 30.
    Caulin C, Salvesen GS, Oshima RG (1997) Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 138:1379–1394PubMedCrossRefGoogle Scholar
  31. 31.
    Leers MP, Kolgen W, Bjorklund V et al (1999) Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol 187:567–572PubMedCrossRefGoogle Scholar
  32. 32.
    Mintzer R, Ramaswamy S, Shah K et al (2012) A whole cell assay to measure caspase-6 activity by detecting cleavage of lamin A/C. PLoS One 7:e30376PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Okinaga T, Kasai H, Tsujisawa T et al (2007) Role of caspases in cleavage of lamin A/C and PARP during apoptosis in macrophages infected with a periodontopathic bacterium. J Med Microbiol 56:1399–1404PubMedCrossRefGoogle Scholar
  34. 34.
    Orth K, Chinnaiyan AM, Garg M et al (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446PubMedCrossRefGoogle Scholar
  35. 35.
    Ruchaud S, Korfali N, Villa P et al (2002) Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J 21:1967–1977PubMedCrossRefGoogle Scholar
  36. 36.
    McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15:322–331PubMedCrossRefGoogle Scholar
  37. 37.
    Altieri DC (2010) Survivin and IAP proteins in cell-death mechanisms. Biochem J 430:199–205PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Varsha Kaushal
    • 1
  • Christian Herzog
    • 2
  • Randy S. Haun
    • 3
    • 4
  • Gur P. Kaushal
    • 3
    • 2
  1. 1.Biology DepartmentHendrix CollegeConwayUSA
  2. 2.Department of Internal MedicineUniversity of Arkansas for Medical SciencesLittle RockUSA
  3. 3.Central Arkansas Veterans Healthcare SystemLittle RockUSA
  4. 4.Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations