Skip to main content

Detecting Caspase Activity in Drosophila Larval Imaginal Discs

  • Protocol
  • First Online:
Caspases,Paracaspases, and Metacaspases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1133))

Abstract

Caspases are a highly specialized class of cell death proteases. Since they are synthesized as inactive full-length zymogens, activation—at least of effector caspases and to some extent also of initiator caspases—requires a proteolytic cleavage event, generating a large and a small subunit, two of each forming the active caspase. The proteolytic cleavage event generates neo-epitopes at both the C-terminus of the large subunit and the N-terminus of the small subunit. The cleaved Caspase-3 (CC3) antibody was raised against the neo-epitope of the large subunit and thus detects only cleaved, but not full-length, Caspase-3. Although raised against human cleaved Caspase-3, the CC3 antibody cross-reacts in other species and detects cleaved caspases, most notably DrICE and Dcp-1, in Drosophila. This protocol describes the procedure for use of the CC3 antibody to detect caspase activity in larval imaginal discs in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43. doi:10.1038/sj.cdd.4402060

    Article  CAS  PubMed  Google Scholar 

  2. Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3(1):78–90

    Article  CAS  Google Scholar 

  3. Crawford ED, Seaman JE, Barber AE II, David DC, Babbitt PC, Burlingame AL, Wells JA (2012) Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling pathways over specific targets and cleavage site motifs in apoptosis. Cell Death Differ 19(12):2040–2048. doi:10.1038/cdd.2012.99

    Article  CAS  PubMed  Google Scholar 

  4. Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9): 2125–2134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Geisbrecht ER, Montell DJ (2004) A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration. Cell 118(1): 111–125. doi:10.1016/j.cell.2004.06.020

    Article  CAS  PubMed  Google Scholar 

  6. Suzanne M, Petzoldt AG, Speder P, Coutelis JB, Steller H, Noselli S (2010) Coupling of apoptosis and L/R patterning controls stepwise organ looping. Curr Biol 20(19): 1773–1778. doi:10.1016/j.cub.2010.08.056

    Article  CAS  PubMed  Google Scholar 

  7. Kuranaga E, Matsunuma T, Kanuka H, Takemoto K, Koto A, Kimura K, Miura M (2011) Apoptosis controls the speed of looping morphogenesis in Drosophila male terminalia. Development 138(8):1493–1499. doi:10.1242/dev.058958

    Article  CAS  PubMed  Google Scholar 

  8. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14(3):399–410. doi:10.1016/j.devcel.2008.01.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14(14):1262–1266. doi:10.1016/j.cub.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  10. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268. doi:10.1128/MCB.00183-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16(16):1606–1615. doi:10.1016/j.cub.2006.07.046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4(5):687–697

    Article  CAS  PubMed  Google Scholar 

  13. Arama E, Bader M, Srivastava M, Bergmann A, Steller H (2006) The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 25(1):232–243. doi:10.1038/sj.emboj.7600920

    Article  CAS  PubMed  Google Scholar 

  14. Stoven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engstrom Y, Maniatis T, Hultmark D (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100(10):5991–5996. doi:10.1073/pnas.1035902100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Leulier F, Rodriguez A, Khush RS, Abrams JM, Lemaitre B (2000) The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep 1(4):353–358. doi:10.1093/embo-reports/kvd073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yacobi-Sharon K, Namdar Y, Arama E (2013) Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 25(1): 29–42. doi:10.1016/j.devcel.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  17. Ciancio G, Pollack A, Taupier MA, Block NL, Irvin GL III (1988) Measurement of cell-cycle phase-specific cell death using Hoechst 33342 and propidium iodide: preservation by ethanol fixation. J Histochem Cytochem 36(9): 1147–1152

    Article  CAS  PubMed  Google Scholar 

  18. Abrams JM, White K, Fessler LI, Steller H (1993) Programmed cell death during Drosophila embryogenesis. Development 117(1):29–43

    CAS  PubMed  Google Scholar 

  19. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  20. Chen P, Abrams JM (2000) Analysis of programmed cell death and apoptosis in Drosophila. Methods Enzymol 322:65–76

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasan A, Roth KA, Sayers RO, Shindler KS, Wong AM, Fritz LC, Tomaselli KJ (1998) In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ 5(12):1004–1016. doi:10.1038/sj.cdd.4400449

    Article  CAS  PubMed  Google Scholar 

  22. Yu SY, Yoo SJ, Yang L, Zapata C, Srinivasan A, Hay BA, Baker NE (2002) A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129(13):3269–3278

    CAS  PubMed  Google Scholar 

  23. Fan Y, Bergmann A (2010) The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17(3):534–539. doi:10.1038/cdd.2009.185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Florentin A, Arama E (2012) Caspase levels and execution efficiencies determine the apoptotic potential of the cell. J Cell Biol 196(4):513–527. doi:10.1083/jcb.201107133

    Article  CAS  PubMed  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Yun Fan, Ernesto Perez, and Jillian Lindblad for their technical expertise and review of the manuscript. This work was supported by grants from the National Institutes of Health (GM068016 and GM107789).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fogarty, C.E., Bergmann, A. (2014). Detecting Caspase Activity in Drosophila Larval Imaginal Discs. In: V. Bozhkov, P., Salvesen, G. (eds) Caspases,Paracaspases, and Metacaspases. Methods in Molecular Biology, vol 1133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0357-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0357-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0356-6

  • Online ISBN: 978-1-4939-0357-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics