Skip to main content

Electrophysiological Methods for Detection of Membrane Leakage and Hemifission by Dynamin 1

  • Protocol
  • First Online:
Dynamin Superfamily GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2159))

Abstract

Membrane fusion and fission are indispensable parts of intracellular membrane recycling and transport. Electrophysiological techniques have been instrumental in discovering and studying fusion and fission pores, the key intermediates shared by both processes. In cells, electrical admittance measurements are used to assess in real time the dynamics of the pore conductance, reflecting the nanoscale transformations of the pore, simultaneously with membrane leakage. Here, we described how this technique is adapted to in vitro mechanistic analyses of membrane fission by dynamin 1 (Dyn1), the protein orchestrating membrane fission in endocytosis. We reconstitute the fission reaction using purified Dyn1 and biomimetic lipid membrane nanotubes of defined geometry. We provide a comprehensive protocol describing simultaneous measurements of the ionic conductance through the nanotube lumen and across the nanotube wall, enabling spatiotemporal correlation between the nanotube constriction by Dyn1, leading to fission and membrane leakage. We present examples of “leaky” and “tight” fission reactions, specify the resolution limits of our method, and discuss how our results support the hemi-fission conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chernomordik LV,  Kozlov MM (2003) Protein-Lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Google Scholar 

  2. Campelo F, Arnarez C, Marrink SJ, Kozlov MM (2014) Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv Colloid Interf Sci 208:25–33

    Google Scholar 

  3. Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35:699–706

    Google Scholar 

  4. Chlanda P, Mekhedov E, Waters H, Schwartz CL, Fischer ER, Ryham RJ, Cohen FS, Blank PS, Zimmerberg J (2016) The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes. Nat Microbiol 1:16050

    Google Scholar 

  5. Haldar S, Mekhedov E, McCormick CD, Blank PS, Zimmerberg J (2019) Lipid-dependence of target membrane stability during influenza viral fusion. J Cell Sci 132:jcs218321

    Google Scholar 

  6. Pannuzzo M, McDargh ZA, Deserno M (2018) The role of scaffold reshaping and disassembly in dynamin driven membrane fission. Elife 7:e39441

    Google Scholar 

  7. Shangguan T, Alford D, Bentz J (1996) Influenza virus–liposome lipid mixing is leaky and largely insensitive to the material properties of the target membrane. Biochemistry 35:4956–4965

    Google Scholar 

  8. Villar AV, Alonso A, Goni FM (2000) Leaky vesicle fusion induced by phosphatidylinositol-specific phospholipase C: observation of mixing of vesicular inner monolayers. Biochemistry 39:14012–14018

    Google Scholar 

  9. Yang ST, Zaitseva E, Chernomordik LV, Melikov K (2010) Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J 99:2525–2533

    Google Scholar 

  10. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Google Scholar 

  11. Frolov VA, Lizunov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J (2003) Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc Natl Acad Sci U S A 100:8698–8703

    Google Scholar 

  12. Ratinov V, Plonsky I, Zimmerberg J (1998) Fusion pore conductance: experimental approaches and theoretical algorithms. Biophys J 74:2374–2387

    Google Scholar 

  13. Cabeza JM, Acosta J, Ales E (2010) Dynamics and regulation of endocytotic fission pores: role of calcium and dynamin. Traffic 11:1579–1590

    Google Scholar 

  14. Lindau M, Rosenboom H, Nordmann J (1994) Exocytosis and endocytosis in single peptidergic nerve terminals. Adv Second Messenger Phosphoprotein Res 29:173–187

    Google Scholar 

  15. Spruce AE, Iwata A, White JM, Almers W (1989) Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342:555–558

    Google Scholar 

  16. Almers W, Breckenridge LJ, Spruce AE (1989) The mechanism of exocytosis during secretion in mast cells. Soc Gen Physiol Ser 44:269–282

    Google Scholar 

  17. Zimmerberg J, Blumenthal R, Sarkar DP, Curran M, Morris SJ (1994) Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol 127:1885–1894

    Google Scholar 

  18. Rosenboom H, Lindau M (1994) xo-endocytosis and closing of the fission pore during endocytosis in single pituitary nerve terminals internally perfused with high calcium concentrations. Proc Natl Acad Sci U S A 91:5267–5271

    Google Scholar 

  19. Mattila JP, Shnyrova AV, Sundborger AC, Hortelano ER, Fuhrmans M, Neumann S, Muller M, Hinshaw JE, Schmid SL, Frolov VA (2015) A hemi-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524:109–113

    Google Scholar 

  20. Frolov VA, Dunina-Barkovskaya AY, Samsonov AV, Zimmerberg J (2003) Membrane permeability changes at early stages of influenza hemagglutinin-mediated fusion. Biophys J 85:1725–1733

    Google Scholar 

  21. Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88

    Google Scholar 

  22. Antonny B, Burd C, De Camilli P, Chen E, Daumke O, Faelber K, Ford M, Frolov VA, Frost A, Hinshaw JE, Kirchhausen T, Kozlov MM, Lenz M, Low HH, McMahon H, Merrifield C, Pollard TD, Robinson PJ, Roux A, Schmid S (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284

    Google Scholar 

  23. Danino D, Hinshaw JE (2001) Dynamin family of mechanoenzymes. Curr Opin Cell Biol 13:454–460

    Google Scholar 

  24. Schmid SL, Frolov VA (2011) Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol 27:79–105

    Google Scholar 

  25. Ugarte-Uribe B, Garcia-Saez AJ (2017) Apoptotic foci at mitochondria: in and around Bax pores. Philos Trans R Soc Lond Ser B Biol Sci 372:20160217

    Google Scholar 

  26. Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J, Frolov VA (2008) GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135:1276–1286

    Google Scholar 

  27. Shnyrova AV, Bashkirov PV, Akimov SA, Pucadyil TJ, Zimmerberg J, Schmid SL, Frolov VA (2013) Geometric catalysis of membrane fission driven by flexible dynamin rings. Science 339:1433–1436

    Google Scholar 

  28. Simunovic M, Prévost C, Callan-Jones A, Bassereau P (2016) Physical basis of some membrane shaping mechanisms. Philos Trans A Math Phys Eng Sci 374:20160034

    Google Scholar 

  29. Tunuguntla RH, Escalada A, Frolov VA, Noy A (2016) Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat Protoc 11:2029–2047

    Google Scholar 

  30. Neher E, Sakmann B (1995) Single-channel recording. Plenum Press, New York

    Google Scholar 

  31. Bashkirov PV, Frolov VA (2018) Mechano-chemistry and catalysis of membrane fission: lessons from dynamins. J Phys D Appl Phys 51:343001

    Google Scholar 

  32. Prévost C, Tsai FC, Bassereau P, Simunovic M (2017) Pulling Membrane Nanotubes from Giant Unilamellar Vesicles. J Vis Exp ​e56086. https://doi.org/10.3791/56086

  33. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Google Scholar 

  34. Zhang G, Muller M (2017) Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers. J Chem Phys 147:064906

    Google Scholar 

  35. Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85:2342–2350

    Google Scholar 

  36. Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (2001) Voltage-Induced Nonconductive Pre-Pores and Metastable Single Pores in Unmodified Planar Lipid Bilayer. Biophys J 80:1829–1836

    Google Scholar 

Download references

Acknowledgments

The work was partially supported by the Russian Foundation for Basic Research (project # 17-04-02042) and the Spanish Ministry of Science, Innovation and Universities grants BFU2015-70552-P and PGC2018-099971-B-I00 (MCIU/AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Frolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bashkirov, P.V., Chekashkina, K.V., Shnyrova, A.V., Frolov, V.A. (2020). Electrophysiological Methods for Detection of Membrane Leakage and Hemifission by Dynamin 1. In: Ramachandran, R. (eds) Dynamin Superfamily GTPases. Methods in Molecular Biology, vol 2159. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0676-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0676-6_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0675-9

  • Online ISBN: 978-1-0716-0676-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics