Skip to main content

Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

Pollen tubes face many obstacles on their way to the ovule. They have to decide whether to navigate around cells or penetrate the cell wall and grow through it or even within it. Besides chemical sensing, which directs the pollen tubes on their path to the ovule, this involves mechanosensing to determine the optimal strategy in specific situations. Mechanical cues then need to be translated into physiological signals, which eventually lead to changes in the growth behavior of the pollen tube. To study these events, we have developed a system to directly quantify the forces involved in pollen tube navigation. We combined a lab-on-a-chip device with a microelectromechanical systems-based force sensor to mimic the pollen tube’s journey from stigma to ovary in vitro. A force-sensing plate creates a mechanical obstacle for the pollen tube to either circumvent or attempt to penetrate while measuring the involved forces in real time. The change of growth behavior and intracellular signaling activities can be observed with a fluorescence microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michard E, Simon AA, Tavares B et al (2017) Signaling with ions: the keystone for apical cell growth and morphogenesis in pollen tubes. Plant Physiol 173:91–111

    Article  CAS  PubMed  Google Scholar 

  2. Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Obermeyer G, Weisenseel MH (1991) Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol 56:319–327

    CAS  PubMed  Google Scholar 

  4. Pierson ES, Miller DD, Callaham DA et al (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173

    Article  CAS  PubMed  Google Scholar 

  5. Malho R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanati Nezhad A, Packirisamy M, Geitmann A (2014) Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J 80:185–195

    Article  CAS  PubMed  Google Scholar 

  7. Uslu VV, Grossmann G (2016) The biosensor toolbox for plant developmental biology. Curr Opin Plant Biol 29:138–147

    Article  CAS  PubMed  Google Scholar 

  8. Shamsudhin N, Laeubli N, Atakan HB et al (2016) Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLOS One 11:e0168138

    Google Scholar 

  9. Felekis D, Muntwyler S, Vogler H et al (2011) Quantifying growth mechanics of living, growing plant cells in situ using microrobotics. Micro Nano Lett 6:311–316

    Article  CAS  Google Scholar 

  10. Vogler H, Draeger C, Weber A et al (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  11. Routier-Kierzkowska AL, Weber A, Kochova P et al (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Felekis D, Vogler H, Grossniklaus U et al (2015) Microrobotic tools for plant biology. In: Sun Y, Liu X (eds) Micro- and nanomanipulation tools. Wiley-VCH Verlag GmbH & Co KGaA, Hoboken, NJ, pp 283–306

    Chapter  Google Scholar 

  13. Vogler H, Felekis D, Nelson BJ et al (2015) Measuring the mechanical properties of plant cell walls. Plants (Basel) 4:167–182

    Article  CAS  Google Scholar 

  14. Majda M, Sapala A, Routier-Kierzkowska AL et al (2019) Cellular force microscopy to measure mechanical forces in plant cells. In: Cvrčková F, Žárský V (eds) Plant cell morphogenesis. Humana, New York, NY, pp 215–230

    Chapter  Google Scholar 

  15. Felekis D, Vogler H, Mecja G et al (2015) Real-time automated characterization of 3D morphology and mechanics of developing plant cells. Int J Robot Res 34:1136–1146

    Article  Google Scholar 

  16. Vogler H, Shamsudhin N, Nelson BJ et al (2017) Measuring cytomechanical forces on growing pollen tubes. In: Obermeyer G, Feijó J (eds) Pollen tip growth. Springer, Cham, pp 65–85

    Chapter  Google Scholar 

  17. Burri JT, Vogler H, Munglani G et al (2019) A microrobotic system for simultaneous measurement of turgor pressure and cell-wall elasticity of individual growing plant cells. IEEE Robot Automat Lett 4:641–646

    Article  Google Scholar 

  18. Burri JT, Vogler H, Läubli NF et al (2018) Feeling the force: how pollen tubes deal with obstacles. New Phytol 220:187–195

    Article  PubMed  Google Scholar 

  19. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  CAS  PubMed  Google Scholar 

  21. Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Google Scholar 

  22. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Vogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burri, J.T., Munglani, G., Nelson, B.J., Grossniklaus, U., Vogler, H. (2020). Quantification of Mechanical Forces and Physiological Processes Involved in Pollen Tube Growth Using Microfluidics and Microrobotics. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics